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Preface

The goal of this book is to codify ideas and results from a specific segment of the
supply chain operations planning literature that has developed over the past few
decades. This segment of the literature draws on the tools of operations research in
order to characterize optimal solutions to problems that seek to efficiently match
a producer’s supply output with the demands or requirements of a set of customers
and/or markets. More specifically, we will emphasize contexts in which the producer
has some control over both supply and demand, i.e., situations in which some degree
of flexibility in demand exists from the producer’s point of view.

The evolution of the operations literature in the past half century has by and
large focused on managing (or minimizing) costs while attempting to meet some
external party’s target output requirements. This external party often corresponds to
a marketing group within the same firm, whose responsibilities include setting prices
and estimating the resulting customer demand levels, in effect, determining optimal
demand levels with respect to some objective. Understanding how price influences
demand for a good, and thus, what constitutes an optimal set of demand levels,
requires some knowledge of how customers will respond to one of the product’s
critical characteristics (in this case, price). Defining the way in which customers
will respond to price in the aggregate is analogous to characterizing the degree of
flexibility that exists in demand as a function of price. Customer flexibility often
exists along numerous product dimensions in addition to price (e.g., product sizes,
delivery quantities, delivery lead times), many of which are directly controllable via
production and distribution operations.

In addition to inherent customer flexibility with respect to product characteris-
tics, a supplier or producer often has discretion as to which customers, demands,
or markets it will satisfy with its product(s). This discretion provides an additional
source of flexibility in planning by permitting the producer to accept or decline cer-
tain customers or markets.

Models for operations planning have typically treated demands as fixed, exoge-
nous parameters, based on predetermined price levels and other fixed product char-
acteristics. This corresponds to a sequential decision making process in which dif-
ferent decisions that ultimately combine to determine profitability are made sepa-
rately. That is, marketing and sales groups essentially estimate the demand levels for
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products containing specific characteristics offered at specific prices, and operations
is tasked with meeting the implied demands at the lowest delivered cost. An alter-
native view, which serves as the focus of this book, treats demand (and/or revenue)
as dependent on key product-characteristic and customer-acceptance decisions that
are made by the producer. This leads to new classes of operations planning models
that effectively treat demand levels as decision variables within the planning model.
The resulting models then determine the optimal production and demand levels, i.e.,
the most efficient match between the supply process and the inherently flexible de-
mands. This book thus brings together several operations research based planning
models that share this alternative view of sales and operations planning. As the fi-
nal part of the book indicates, the models presented provide a foundation for both
adapting a wealth of existing problems to this paradigm and for its extension and
generalization to even broader classes of decision problems.

Joseph GeunesGainesville, FL, USA
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Part I
Supply Chain Operations Models

with Demand Shaping



Chapter 1
Scope of Problem Coverage and Introduction

Abstract This chapter begins with an introduction to the book’s scope and prelim-
inary concepts applied throughout the book. We then present a set of basic, founda-
tional, and classical models from the operations planning literature that serve as the
underpinning of the work presented throughout the book. These models include the
economic order quantity (EOQ), the newsvendor problem, the economic lot-sizing
problem (ELSP), the knapsack problem (KP), the generalized assignment problem
(GAP), and the facility location problem (FLP). The main results presented later
in this book generalize these classical models to account for a planner’s ability to
influence demands, which have traditionally served as fixed parameters in these
foundational models.

1.1 Scope and Preliminaries

The work in this book generalizes several of the most fundamental and classical
models for production and inventory planning. These include the economic order
quantity (EOQ), the newsvendor problem, the economic lot-sizing problem (ELSP),
the knapsack problem (KP), the generalized assignment problem (GAP), and the fa-
cility location problem (FLP). Each of these models involves a very specific set
of assumptions, which we will specify when introducing the associated model.
Each model represents an abstraction with respect to some practical problem that
is broadly applicable to entities that produce and/or stock consumer goods. This ab-
straction results in an idealized version of the associated real-world problem and,
thus, one is unlikely to find that the required assumptions hold precisely in any
practical setting. Despite this, these models are powerful for their approximation of
reality and because they mathematically formalize important relationships among
the key parameters and decision factors that combine to determine the economic
performance of the system being modeled. This book will, therefore, present each
model and its assumptions without providing strenuous arguments as to the degree
to which these assumptions provide an effective approximation for any particular
practical setting.

For ease of exposition, this book will also focus on the single-product version of
the models in question. While multiple-product generalizations often follow based
on a straightforward analysis, these generalizations tend to detract from the central

J. Geunes, Demand Flexibility in Supply Chain Planning,
SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9347-2_1, © Joseph Geunes 2012
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4 1 Scope of Problem Coverage and Introduction

theme of modeling sources of demand flexibility. For the single-product version of
a problem, we will essentially draw on three techniques to model a producer’s abil-
ity to shape demand. The first of these techniques involves the ability to explicitly
select a subset from some set of potential demands. We will refer to this technique
as demand selection. We will refer to cases in which demand selection requires se-
lecting all or none of a time-phased vector of demands as market selection. The
second technique implicitly selects demands as a result of the dependence of de-
mand on price. In this approach, selecting a demand level is equivalent to selecting
a price level, assuming a one-to-one correspondence between price and demand in
any planning period. The third technique we will explore may be characterized as a
form of demand sizing. This method permits selecting the level, quantity, or size at
which each demand will be satisfied, within some prespecified upper and lower lim-
its. Observe that this concept of demand sizing generalizes demand selection when
the prespecified lower limit equals zero. That is, choosing a size of zero under the
demand sizing technique corresponds to a decision to not select a given demand,
whereas choosing a positive size corresponds to selecting the demand for satisfac-
tion.

1.2 Overview of Foundational Models

This section describes the basic models that serve as a basis for our exploration
of operations models that incorporate demand flexibility. Each of the following six
subsections provides a brief definition of a model that will be generalized in a later
chapter.

1.2.1 The Economic Order Quantity (EOQ) Model

The economic order quantity (EOQ) model serves as the oldest quantitative model
for production and inventory planning [8]. Despite its simplicity and high degree
of abstraction, it remains widely used today, as it elegantly captures perhaps the
most critical tradeoff inherent in inventory planning contexts between fixed order
costs and inventory holding costs. We next provide an overview of the EOQ model
assumptions and main results. For an in-depth derivation and analysis of the EOQ
model, please see [9].

The EOQ model considers a single stage of inventory that stocks a single product
with a constant and continuous demand rate of D units per unit time that will persist
infinitely far into the future. The planner wishes to stock the item in order to ensure
that all demands are met from stock as they occur. This is possible because the
demand rate is deterministic and the stage replenishes from a supply source with
a known and fixed (and finite) delivery lead time and with no capacity limit on
the amount it can supply. Any time the stage orders a quantity of Q units from the
supply source, all Q units are delivered after the fixed lead time. The planner pays C
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dollars for each unit ordered and also pays a fixed order cost of S dollars each time a
replenishment order is placed. The planner also accrues a holding cost for each unit
held in inventory of H dollars per unit per unit time. The planner wishes to minimize
the average cost per unit time over the infinite horizon while meeting all demands
on time. It is straightforward to show that because all costs are time invariant, as is
the demand rate, the planner’s optimal policy requires periodically ordering batches
of constant size (Q), and timing these replenishment orders to arrive precisely at the
point in time at which the current on-hand inventory will reach zero. The average
cost per unit time as a function of the order quantity Q, which we denote by AC(Q),
can be written as

AC(Q) = CD + SD

Q
+ H

Q

2
. (1.1)

The first term in (1.1) captures the average variable purchase cost per unit time,
while the second and third terms correspond to the average fixed order cost per unit
time and the average holding cost per unit time, respectively. It is straightforward
to show that AC(Q) is strictly convex in Q for all Q > 0, which implies that the
following stationary point serves as a strict global minimum for (1.1) among all
positive Q values:

Q∗ =
√

2SD

H
. (1.2)

Equation (1.2) is referred to as the economic order quantity and it captures the crit-
ical tradeoff between fixed order costs and holding costs. A high relative value of
the fixed order cost S leads to a large batch size, which increases the time between
orders. Conversely, a high relative value of the holding cost H reduces the batch
size, which leads to a lower average inventory level. It is more than an interesting
mathematical curiosity that, at the optimal (EOQ) batch size, the average setup cost
per unit time is exactly matched to the average holding cost per unit time, i.e.,

SD

Q∗ = H
Q∗

2
=

√
SDH

2
. (1.3)

This result has motivated numerous heuristic solution approaches for more complex
inventory planning problems in an attempt to match average fixed order costs and
holding costs per unit time as closely as possible (see [9]). As a result of (1.3), the
value of AC(Q) at the EOQ can be written compactly as

AC(Q∗) = CD + √
2SDH. (1.4)

The above equation (1.4) will come into play again in Chap. 3 when we consider
EOQ-type models with demand selection.

Before concluding this section, we note that the above equations can easily be
generalized to account for settings in which the batch of size Q is not delivered all
at one instant following a fixed lead time, but is instead accumulated at a finite rate.
In particular, if inventory is accumulated at a rate of P units per unit time (where
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we must assume that P ≥ D in order to be able to keep up with demand), then
we can simply replace each instance of the parameter H in Eqs. (1.1)–(1.4) with
H ′ = 1 − D/P and all of the results we have discussed remain valid. The resulting
model is often referred to as the EOQ problem with a finite production rate, or
simply as the Economic Production Quantity (EPQ) model. While the EOQ model
tends to be more appropriate for an inventory stage that orders in batches from an
external supplier, the EPQ model tends to apply more readily to internal production
environments when production contributes to inventory at a finite rate.

1.2.2 The Newsvendor Problem

The newsvendor problem is perhaps the simplest stochastic model for inventory
planning. This problem considers a single planning period with uncertain demand.
Demand in the period is therefore a random variable, which we denote as xD , with
an associated probability density function (pdf) of f (xD) and cumulative distri-
bution function (cdf) F(xD) (our approach will assume that demand in the single
period can be effectively modeled using a continuous probability distribution with
mean μD and standard deviation σD). The planner stocks Q units in anticipation of
the period’s demand, where each unit comes at a procurement cost of C per unit.
Stock is sold at a fixed unit price p. Any remaining stock at the end of the period is
assessed a cost of H per unit, where a negative value of H corresponds to a salvage
value and a positive value may be viewed as a disposal cost or, more generically,
a holding cost. If demand exceeds the stock level Q, each shortage is assessed a
penalty cost of B per unit (this “cost” may contain any lost profit margin in addition
to any so-called loss-of-goodwill cost). The expected single-period profit, which
depends on the quantity stocked, and which we denote by Π(Q), is then written as

Π(Q) = p

(
μD −

∫ ∞

Q

(xD − Q)f (xD)dxD

)
− CQ

− H

∫ Q

0
(Q − xD)f (xD)dxD − B

∫ ∞

Q

(xD − Q)f (xD)dxD. (1.5)

The first term on the right-hand side captures the expected revenue, where we
have E[Sales(Q)] = μD − ∫ ∞

Q
(xD − Q)f (xD)dxD , and where E[·] is the expected

value operator. The second term denotes the variable purchase cost CQ, while the
third and fourth terms capture the expected cost of leftovers and shortages, respec-
tively, with E[Leftovers(Q)] = ∫ Q

0 (Q − xD)f (xD)dxD and E[Shortages(Q)] =∫ ∞
Q

(xD − Q)f (xD)dxD . This expected single-period profit equation can be equiv-
alently written as

SPC(Q) = (p + H)μD − (C + H)Q − (p + B + H)

∫ ∞

Q

(xD − Q)f (xD)dxD.

(1.6)
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Using Leibniz’ rule [2], it is straightforward to show that SPC(Q) is concave in Q

and thus that the following stationary point provides its global maximum:

F(Q∗) = p − C + B

p + B + H
. (1.7)

We next assume that xD is normally distributed with expected value μD and stan-
dard deviation σD (while the normal distribution has a support of (−∞,∞), cer-
tain demand distributions may be effectively approximated using a normal dis-
tribution, assuming that the probability of negative demand is negligible; for ex-
ample, if 3 × σD < μD , then the probability of negative demand is less than
0.00135). Under normally distributed demand, (1.7) can be equivalently written as
Φ(z∗) = (p − C + B)/(p + B + H), where Φ(z∗) is the cdf of the standard unit
normal distribution at the critical fraction (p − C + B)/(p + B + H), and z∗ is the
standard unit normal variate value at this fraction. We may then use the following
equation to express the optimal order quantity:

Q∗ = μD + z∗σD. (1.8)

The normal distribution assumption also allows us to rewrite the integral in (1.6) as
∫ ∞

Q

(xD − Q)f (xD)dxD = σD

∫ ∞

z

(u − z)φ(u)du ≡ σDL(z), (1.9)

where z = (Q − μD)/σD and L(z) is known as the standard normal loss function
(see [9]). Using (1.8) and (1.9), under normally distributed demand, we can write
the expected profit, Πn(Q), at the optimal order quantity, Q∗, compactly as

Πn(Q
∗) = rμD − K(z∗)σD, (1.10)

where r = p − C denotes the unit net revenue (profit margin) and K(z∗) = (C +
H)z∗ + (p + B + H)L(z∗). Equation (1.10) will play a key role in our analysis of
stochastic demand models with demand selection in Chap. 4. For one of the earliest
papers dealing with the single-period inventory problem, please see [7].

1.2.3 The Economic Lot Sizing Problem (ELSP)

The economic lot sizing problem (ELSP) considers the same tradeoff as the EOQ
model, using a discrete time approach with a finite number of time periods. This
model assumes a finite horizon length of T periods, where Dt denotes the demand
in period t , for t = 1, . . . , T . Thus, demand is permitted to vary over time, although
we are relegated to a discrete set of time points at which we may assess costs, in
contrast with the EOQ model, which permits costs to accrue continuously through-
out time. This discrete-time approach also allows handling time-varying cost pa-
rameters much more easily than with a continuous-time model. We denote St and
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Ct , respectively, as the fixed order cost and the unit procurement cost in period
t , for t = 1, . . . , T . We must choose a convention for assessing inventory costs at
some discrete set of time points; the most common convention in the literature ap-
plies a cost of Ht dollars per unit of inventory remaining at the end of period t ,
for t = 1, . . . , T . In order to track costs, it is convenient to define Qt and It as
the order quantity and ending inventory in period t , for t = 1, . . . , T . Assuming no
demand is lost (i.e., all demand is met by the end of the horizon), we can repre-
sent inventory level transitions from period to period using the balance equations
It = Qt + It−1 − Dt , for t = 1, . . . , T (we assume I0 = 0). That is, the inventory
at the end of a period equals the inventory at the end of the prior period, plus the
amount produced in the period, minus the period’s demand. In order to track fixed
order costs, we define the binary variable yt , which equals one if an order is placed
in period t , and zero otherwise, for t = 1, . . . , T . We assume that production or
procurement capacity is unlimited in any period, and that production in period t is
delivered at the beginning of period t , for t = 1, . . . , T (or, equivalently, that pro-
duction decisions are offset from batch deliveries by some fixed lead time).

The planner wishes to minimize total fixed order, variable procurement, and in-
ventory holding costs incurred over the planning horizon while meeting all demands
on time (i.e., without any shortages, which is equivalent to assuming that the end-
of-period inventory must be nonnegative in each period). We can thus formulate the
ELSP as follows:

[ELSP] Minimize
T∑

t=1

{Styt + CtQt + HtIt } (1.11)

Subject to It = Qt + It−1 − Dt, t = 1, . . . , T , (1.12)

Qt ≤ Mtyt , t = 1, . . . , T , (1.13)

Qt, It ≥ 0, t = 1, . . . , T , (1.14)

yt ∈ {0,1}, t = 1, . . . , T . (1.15)

The objective function (1.11) minimizes the sum of fixed order, variable procure-
ment, and inventory holding costs, while the first constraint set (1.12) corresponds
to the inventory balance requirements discussed previously. The second constraint
set (1.13) forces production in a period to zero if no order is placed, and permits
production to take a positive value up to Mt in period t if an order is placed. The
parameter Mt corresponds to a large positive number that effectively ensures that
no capacity limit exists (we can set Mt = ∑T

τ=t Dτ without loss of optimality). The
third constraint set (1.14) ensures nonnegativity of order quantities and inventory
levels, while the final constraint set (1.15) requires each fixed order variable to take
a value of zero or one.

Despite our formulation of the ELSP as a mixed-integer linear program, the prob-
lem possesses special structure that permits solving it very efficiently, even for large
values of T . The most important property possessed by the model is the so-called
zero-inventory-ordering (ZIO) property, which says that an optimal solution exists
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such that Qt × It−1 = 0 for all values of t . This implies that an optimal solution
exists such that if an order is placed in period t (Qt > 0), then no inventory is held
over from period t − 1 (It−1 = 0); similarly, an optimal solution exists such that if
we hold inventory at the end of period t (It > 0), then no production occurs in period
t + 1 (Qt+1 = 0), and this holds for all values of t . This ensures that we will find an
optimal solution if we confine ourselves to solutions of the form Qt = ∑s

τ=t Dτ for
each t , with s equal to some time period index greater than or equal to t − 1 (using
the convention

∑t−1
τ=t Dτ = 0). The values of Qt must of course be compatible in

forming a solution for the T -period problem, i.e., if Qt = ∑s
τ=t Dτ with s > t , then

we require Qτ = 0 for τ = t + 1, . . . , s and Qs+1 > 0 (assuming s < T and positive
demand in every period). A solution method that implicitly considers all solutions
of this form can be obtained by using a shortest path graph containing T + 1 nodes
in which an arc is created from node t to s + 1 (for each t and all s ≥ t ) that ac-
counts for all costs incurred when using the order in period t to satisfy all demands
in periods t through s inclusive. The resulting shortest path graph contains O(T 2)

arcs, which implies a worst-case complexity1 of O(T 2) for solving this problem.
The definition of the ELSP and an O(T 2) solution approach were first provided
in [11]. Three papers subsequently appeared that showed how to solve the problem
more quickly, in O(T logT ) time when costs vary with time, and in O(T ) time
under non-increasing marginal costs2 (see [1, 4], and [10]). The ELSP formulation
(1.11)–(1.15) and basic solution approaches we have described will form the basis
for the problems we will discuss in Chaps. 5 and 6.

1.2.4 The Knapsack Problem (KP)

The knapsack problem is perhaps the simplest combinatorial demand selection prob-
lem, and is also one of the easiest operations research problems to explain to the
lay-person. This problem considers a single resource (the knapsack) with limited
(positive) capacity. The problem considers a set of items, a subset of which may be
inserted in the knapsack. Each item has a value, and the decision maker wishes to
maximize the value of the items inserted in the knapsack. Of course, if all items in
the set fit in the knapsack, the problem is trivial and the value is maximized by in-
cluding all of the items with positive value (we can immediately eliminate all items
with non-positive value from consideration without loss of generality). We there-
fore consider problems in which the capacity consumption of the set of items under
consideration exceeds the knapsack’s capacity. We will refer to items as demands,

1The notation O(T 2) implies that some constant K exists such that as T increases, the number of
steps required to solve the problem is bounded by KT 2.
2More specifically, non-increasing marginal costs imply Ct +Ht ≥ Ct+1 for t = 1, . . . , T − 1, i.e.,
given that orders are placed in periods s and t with s > t , then satisfying a unit of demand in period
s or later is at least as cheap when using production in period s as it is when using production in
period t .
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as each item contains an inherent demand for the knapsack’s capacity; similarly, we
will refer to the knapsack using the generic term resource.

To formulate this problem, let J denote a set of n demands, indexed by j , and
define xj as a binary variable equal to one if demand j is allocated to the resource
(i.e., selected), and zero otherwise. Let Dj denote the capacity consumption associ-
ated with demand j , and let b denote the total capacity of the resource (we assume
that the resource capacity and demand consumption are measured in consistent units
using a single dimension). Letting Rj denote the value associated with demand j ,
we formulate the KP as follows:

[KP] Maximize
n∑

j=1

Rjxj (1.16)

Subject to
n∑

j=1

Djxj ≤ b, (1.17)

xj ∈ {0,1}, j = 1, . . . , n. (1.18)

The objective of KP (1.16) maximizes the total value of selected demands, the sin-
gle constraint (1.17) enforces the resource capacity limit, and the final constraint
set (1.18) ensures that every demand is either selected or rejected. Although the
recognition version3 of the KP is N P-complete (see [6]), the KP can be solved in
pseudopolynomial time in the number of demands and the resource capacity (a dy-
namic programming approach can be applied to solve the problem in O(nb) time).
The solution of the continuous relaxation of KP (where each xj is permitted to take
any value on the interval [0,1]) is quite intuitive, as it nicely captures the trade-
off between a demand’s value and resource capacity consumption (note that the
continuous version is equivalent to being able to select a portion of any demand).
This solution works by sorting demands in nonincreasing order of their value-to-
capacity-consumption ratios, i.e., Rj/Dj , and allocating them to the resource as
long as capacity permits. After sorting demands in this order, let k denote the index
of the unique item4 such that

∑k−1
j=1 Dj ≤ b and

∑k
j=1 Dj > b. Then an optimal

solution sets xj = 1 for j = 1, . . . , k − 1, xk = (b − ∑k−1
j=1 Dj)/Dk , and xj = 0 for

j = k + 1, . . . , n (unless
∑k−1

j=1 Dj = b, in which case we simply have xk = 0).
The structure of this optimal solution is quite useful with respect to the original

binary version of the problem, as the adjusted solution in which xk = 0 (and the
values of all other xj variables are unchanged) turns out to be feasible for KP. Un-
der mild assumptions on the distributions of the values and resource consumption

3In the language of complexity theory, the recognition version of an optimization problem with a
maximization objective asks the question “Does a feasible solution exist with objective function
value at least equal to K for some constant K?” Thus, the recognition version of the problem
always has a yes/no answer (see [6]).
4We assume uniqueness of Rj/Dj ratios, as items with identical values may be combined into one
item in the continuous version of the problem.
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parameters, as well as on the resource capacity as the number of items increases, it
is possible to show that the resulting feasible solution is asymptotically optimal for
the KP as the number of items and the knapsack capacity increase (see [5]). Later, in
Chap. 8, we will encounter a generalized version of the KP that considers flexibility
in demand sizes, where each value of Dj becomes a decision variable whose value
must fall between some lower and upper bounds (and where the quantity of demand
satisfied depends on the chosen value of Dj ).

1.2.5 The Generalized Assignment Problem (GAP)

The generalized assignment problem (GAP) arises in many production and logistics
settings in which jobs must be assigned to resources. Examples include the assign-
ment of jobs to a production machine, or of customer shipments to a delivery truck.
In many contexts these jobs correspond to specific customer requirements or de-
mands that must be fulfilled. Thus, we use the term demands in place of jobs in
describing the GAP. As with the newsvendor problem, the GAP has no time dimen-
sion, which means that we can view this as a one-period problem. We consider a set
I of m resources indexed by i that can be used to fulfill demands, along with a set J

of n demands indexed by j . Resource i ∈ I has a capacity of bi units, while demand
j ∈ J requires Dij units of capacity if it is fulfilled using resource i. Processing
demand j on resource i costs cij dollars. The GAP requires assigning each demand
j ∈ J to some resource i ∈ I . A demand may not be assigned to multiple resources,
i.e., no splitting of a demand’s processing requirements among multiple resources
is permitted. The planner wishes to assign all demands at minimum total cost while
obeying each resource’s capacity limit. Defining xij as a binary variable equal to
one if demand j is assigned to resource i, and zero otherwise, we can formulate the
GAP as follows:

[GAP] Minimize
m∑

i=1

n∑
j=1

cij xij (1.19)

Subject to
n∑

j=1

Dijxij ≤ bi, i = 1, . . . ,m, (1.20)

m∑
i=1

xij = 1, j = 1, . . . , n, (1.21)

xij ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . , n. (1.22)

The objective of the GAP (1.19) minimizes total assignment costs, while the first
constraint set (1.20) ensures that the resource requirements for demands assigned to
resource i do not exceed the resource capacity bi , for all i ∈ I . The second constraint
set (1.21) requires assigning each demand j ∈ J to some resource i ∈ I , while the
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final constraint set (1.22) ensures that each assignment variable takes a value of zero
or one. Later in Chaps. 7 and 8 we will explore a more general version of the GAP
that permits flexibility in satisfying demand requirements. For an early definition of
the GAP, please see [3].

1.2.6 The Facility Location Problem (FLP)

The facility location problem (FLP) we next present generalizes two of the models
we have already discussed: the ELSP and the GAP. Although the model originated in
contexts requiring location decisions for physical facilities, we can view it as a more
generic fixed-charge assignment or bipartite network flow problem. In particular, we
can view the FLP as a generalization of the GAP in which a fixed-charge is incurred
when using any resource. Thus, if Si denotes the fixed charge for using resource
i, and yi denotes a binary variable equal to one if resource i is utilized (and zero
otherwise), then we can formulate this more general version of the GAP as follows:

[FLP] Minimize
m∑

i=1

Siyi +
m∑

i=1

n∑
j=1

cij xij (1.23)

Subject to
n∑

j=1

Djxij ≤ biyi, i = 1, . . . ,m, (1.24)

m∑
i=1

xij = 1, j = 1, . . . , n, (1.25)

x ∈ Ω, (1.26)

yi ∈ {0,1}, i = 1, . . . ,m. (1.27)

The objective of the FLP (1.23) minimizes the sum of resource fixed costs plus de-
mand assignment costs. The first constraint set (1.24) differs from (1.20) because
the demand is independent of the facility (hence the Dj instead of Dij ) and in the
extra yi term multiplying the capacity on the right-hand side. This constraint thus
only permits assigning demands to a resource if the associated fixed cost is absorbed
(and yi = 1). The third constraint set (1.26) differs from our formulation of the GAP
as we now require that each variable xij is a member of some m × n dimensional
set Ω . When Ω = [0,1]m×n, then we permit splitting each demand among multi-
ple resources by allowing the assignment (xij ) variables to be continuous. When
Ω = {0,1}m×n, then this version of the problem is known as the FLP with single-
sourcing requirements; strictly speaking, the FLP with single sourcing generalizes
the GAP, and the formulation of the FLP when Ω = [0,1]m×n is a relaxation of the
single-sourcing version of the problem (note that when capacities are unlimited, this
distinction is not necessary, as an optimal single-sourcing solution is guaranteed to
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exist). The remaining constraint set (1.27) imposes binary restrictions on the new
fixed-charge (yi ) variables.

Observe that in addition to generalizing the ELSP and GAP, when the assignment
constraints (1.25) are relaxed (either by omitting them or by changing the equality to
a less than or equal to relation) and m = 1 (only a single resource exists with S1 = 0),
then the FLP reduces to the KP if the c1j values are permitted to be negative (and
−c1j is equal to Rj ).

To see how the ELSP serves as a special case of FLP, observe that we can re-
formulate the ELSP as follows. We first define xts as the percentage of demand
in period s that is satisfied using procurement in period t , for all t = 1, . . . , T

and s = t, . . . , T . In terms of the ELSP formulation, we have Qt = ∑T
s=t Dsxts

and It = ∑t
τ=1

∑T
s=τ Dsxτs − ∑t

τ=1 Dτ . We next define cts as the cost (procure-
ment plus holding) to satisfy demand in period s using production in period t , i.e.,

cts = (Ct +∑s−1
τ=t Hτ )Ds . We can then formulate the ELSP equivalently as follows:

[FELSP] Minimize
T∑

t=1

Styt +
T∑

t=1

T∑
s=t

ctsxts (1.28)

Subject to
T∑

s=t

Dsxts ≤ Mtyt , t = 1, . . . , T , (1.29)

s∑
t=1

xts = 1, s = 1, . . . , T , (1.30)

xts ≥ 0, t = 1, . . . , T , s = t, . . . , T , (1.31)

yt ∈ {0,1}, t = 1, . . . , T . (1.32)

The FELSP formulation is equivalent to the ELSP formulation, and is a special case
of the FLP in which a demand may be assigned to only a subset of the resources, and
resource capacities are effectively unlimited (in this case, the resources correspond
to period orders or production setups). In addition, the FELSP formulation implicitly
assumes that the size of each demand s is independent of the resource to which it
is assigned (hence the single s index for Ds ). By replacing each Mt with a finite
value bt , we obtain the capacitated version of the ELSP. Note that the uncapacitated
version of the FLP is obtained by replacing each bi in (1.24) with a big-Mi value
(e.g., Mi = ∑n

j=1 Dij for each i = 1, . . . ,m). The uncapacitated version of the FLP
(and, therefore, the FELSP formulation) has the property that an optimal solution
exists in which the xij variables are binary, i.e., a single-sourcing solution is optimal
even though it is not explicitly required.
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Chapter 2
Production and Inventory Planning Models
with Demand Shaping

Abstract This chapter considers the state of prior literature on operations models
that account for demand flexibility. In particular, we focus on generalizations of
the models discussed in Chap. 1 that treat demands as decision variables. These
generalizations typically involve pricing models, and they provide a foundation for
the models we will study in subsequent chapters.

2.1 EOQ Models with Pricing

Whitin [37] provided a seminal paper on inventory control and pricing under the
EOQ model assumptions (this paper also considers a single-period stochastic prob-
lem, which we discuss in the following section). This model generalizes cost equa-
tion (1.4) to account for price-dependent demand and subsequently maximizes profit
per unit time instead of cost. In order to do this, a linear price–demand function is
assumed that takes the form

D = β − αp, (2.1)

where α and β are scalars (which are typically assumed to be positive) and p denotes
price. Using this demand function (2.1) along with cost Eq. (1.4), we can write the
average profit per unit time as a function of p, denoted as Π(p), as

Π(p) = (p − C)(β − αp) − √
2S(β − αp)H. (2.2)

Letting Q∗(p) = √
2S(β − αp)/H , Arcelus and Srinivasan [3] provide the follow-

ing form of the stationary-point solution for the optimal price1:

p∗ = 1

2

[
β

α
+ C + S

Q∗(p∗)

]
, (2.3)

1One can verify that the second derivative of Π(p) with respect to p is strictly increasing in p;
thus the profit function Π(p) is either convex in p for all p ≥ 0, in which case an optimal extreme
point solution exists (i.e., either p∗ = 0 or p∗ = β/α), or Π(p) is concave on some interval [0, p̃]
and convex for p ≥ p̃. In the latter case, either an extreme solution or the stationary-point solution
(2.3) is optimal (assuming such a stationary point exists).
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where

Q∗(p∗) =
√

2S(β − αp∗)
H

. (2.4)

This generalized version of the EOQ model permits selecting the optimal demand
level when demand is price-dependent (for simplicity, we have considered a lin-
ear price–demand function, although more complex functions have been explored).
Numerous additional generalizations of this basic model have been addressed in the
literature, including problems with more general demand functions ([23, 25, 31]),
quantity discounts ([1, 8, 9]), and investment and storage constraints ([7, 24]).

2.2 The Newsvendor Problem with Pricing and Demand Shaping

As noted in the previous section, Whitin [37] first considered a single period inven-
tory problem with pricing under demand uncertainty. This problem used a marginal
analysis with a unit profit for items sold and a unit loss associated with excess in-
ventory remaining after demand is realized. Assuming that expected demand is a
linear function of the profit margin and that demand is uniformly distributed be-
tween zero and twice the expected demand, Whitin [37] derived an expression for
the optimal profit margin. The demand model used by Whitin [37] is effectively a
multiplicative model, as both the expected value and the variance of the demand dis-
tribution depend on price. This is in contrast with the additive model, where demand
is expressed as a deterministic function of price plus a random error term, which is
independent of price. That is, letting D(p, ε) denote the demand function, where ε

is a random variable, then in an additive model, D(p, ε) = y(p) + ε, where y(p)

is a deterministic function of price and ε is a random variable with mean μ and
variance σ 2. Under a multiplicative model, we have D(p, ε) = y(p)ε. The form of
the demand model assumed fundamentally affects both the quantitative and qualita-
tive results of the model. We will first briefly illustrate the application of a simple
additive demand model and then discuss more general work that subsumes both the
additive and multiplicative cases.

We initially consider the basic newsvendor problem under normal demand dis-
cussed in Chap. 1. Consider a generalized version of the expected profit equation
(1.10) in which the expected demand μD is price dependent. In particular, assume
that μD = α − βp. In this case, Eq. (1.10) becomes

Πn

(
Q∗,p

) = (p − C)(α − βp) − K
(
z∗)σD. (2.5)

This profit equation is concave in p with stationary-point solution (and therefore
optimal solution) p∗

a = (1/2)(C + (α/β)), where the subscript a corresponds to
the additive case. Observe that for this additive demand model, the optimal price
depends only on the profit margin (p−C) and the expected demand, i.e., the optimal
price is the same as that for the zero-variance (risk-free) case. The same is not true
in a multiplicative model.
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To illustrate this, suppose that, in addition, σD is a linear function of price, i.e.,
σD = (α − βp)σ . This is equivalent to a multiplicative model in which y(p) =
(α − βp) and ε is normally distributed with expected value one and variance σ 2.
In this special case, the expected profit equation remains concave in p, and the
stationary-point optimal solution becomes p∗

m = (1/2)(C + (α/β) + K(z∗)σ ) =
p∗

a + (K(z∗)σ/2), where the subscript m corresponds to the multiplicative case.
Thus, the price in the multiplicative case equals the risk-free (additive) price plus a
premium for the way in which price affects uncertainty.

Petruzzi and Dada [29] provide an excellent, general, and detailed analysis of
the newsvendor problem with pricing. We next summarize their main results, which
unify the treatment of the additive and multiplicative cases. These results build on
the foundations provided in [13, 21, 28, 37, 38], and [39]. Petruzzi and Dada [29]
consider an expected profit function of the form

Π(Q,p) = (p − C)E
[
Sales(ζ,p)

] − (C + H)E
[
Leftovers(ζ,p)

]

− BE
[
Shortages(ζ,p)

]
, (2.6)

where a one-to-one correspondence exists between the variable ζ and the order
quantity Q at any price. The relationship between Q and ζ depends on the form
of the demand function. In the additive case, ζ is defined using ζ = Q − y(p). In
the multiplicative case, ζ is defined using ζ = Q/y(p).

Petruzzi and Dada [29] show that, for both the additive and multiplicative demand
cases, ζ can be written as

ζ = μ + SFσ, (2.7)

where SF is defined in [32] as the safety factor, which is the number of standard
deviations by which the order quantity differs from the expected value of demand,
i.e.,

SF = Q − E[D(p, ε)]
SD[D(p, ε)] , (2.8)

where SD[D(p, ε)] is the standard deviation of D(p, ε). They then define the base
price, pB(ζ ) as the price that maximizes the expected contribution to profit from
sales, i.e., the price that maximizes (p − C)E[Sales(ζ,p)] (note that pB(ζ ) maxi-
mizes the risk-free profit, i.e., expected profit when variance equals zero). Their first
main result shows that for both the additive and multiplicative cases, for a given ζ ,
pB(ζ ) is determined by the unique value of p satisfying

p = C − E[Sales(ζ,p)]
∂E[Sales(ζ,p)]/∂p . (2.9)

The second main result states that the optimal price in both the multiplicative and
additive cases is bounded from below by pB(ζ ) for any given ζ . This implies that for
both cases we can view the optimal price as the optimal base price plus a premium.
In the additive case this premium equals zero because, for any given ζ , the expected
leftover and shortage costs are independent of price. In the multiplicative case, the
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premium depends on the impact the price has on expected holding and shortage
costs. Petruzzi and Dada [32] provide functional forms for the optimal price in both
the multiplicative and additive cases, as well as methods to determine the optimal
corresponding order quantity.

In addition to shaping demand through pricing, a few papers have considered
different dimensions of demand flexibility in a stochastic demand setting. Petruzzi
and Monahan [30] consider a fashion goods context with a primary and secondary
market, where the decision maker must determine the optimal time at which to move
a good from the primary to the secondary market. Carr and Duenyas [5] consider
a production system with two classes of demand, each of which has a Poisson dis-
tributed arrival rate. Type 1 demands are called make-to-stock demands, and Type 2
demands are called make-to-order demands. Type 1 demands result in a shortage
cost if a demand occurs and stock is depleted, while Type 2 demands may be ac-
cepted or rejected, although those accepted demands are made-to-order. This work
provides an optimal production and order acceptance policy for this problem class.
Carr and Lovejoy [6] consider a single-period newsvendor-type problem in which
a number of prioritized demand portfolios are available, and a single resource with
random capacity may be used to satisfy demands. The decision maker must deter-
mine the amount of demand to select within each portfolio in order to maximize
expected profit.

2.3 Lot Sizing with Pricing

The earliest work on integrating pricing in the ELSP appears to be that of Thomas
[33]. His work generalized the ELSP to incorporate the dependence of demand in
each period on price. In this model, price may vary from period to period, and de-
mand in period t depends on the price in period t , pt , according to the function
Dt(pt ). This generalization of the ELSP can be formulated as follows:

[ELSP′] Maximize
T∑

t=1

{
ptDt(pt ) − Styt − CtQt − HtIt

}
(2.10)

Subject to It = Qt + It−1 − Dt(pt ), t = 1, . . . , T , (2.11)

Qt ≤ Mtyt , t = 1, . . . , T , (2.12)

Qt, It ,pt ≥ 0, t = 1, . . . , T , (2.13)

yt ∈ {0,1}, t = 1, . . . , T . (2.14)

The solution approach relies on the fact that for any given price vector, the problem
reduces to the ELSP, and the zero-inventory-ordering (ZIO) property continues to
hold. This implies that the shortest path solution approach discussed in Chap. 1 may
still be applied in principle, although it becomes an acyclic longest path problem
in which arcs are assigned profits instead of costs. If, for example, production in
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period t satisfies demand in periods t through s, then the profit on the arc from node
t to node s + 1 is obtained by solving the following pricing subproblem PSP where,
with a slight abuse of notation, Ht,τ = ∑τ−1

u=t Hu:

[PSP] Maximize
s∑

τ=t

{
(pτ − Ct − Ht,τ )Dτ (pτ )

}
. (2.15)

The PSP above decomposes by period, and its difficulty depends on the specification
of the demand functions Dt(pt ). If the optimal solution value to the PSP is less than
or equal to the fixed order cost in period t , St , then the maximum arc (t, s +1) profit
equals zero; otherwise the arc profit equals the optimal objective function value less
St . Thomas [33] illustrates the case in which Dt(pt ) is linear in pt for t = 1, . . . , T ,
which implies that the PSP is easily solved using first order conditions.

Kunreuther and Schrage [22] subsequently considered the problem when price
must be time-invariant, which is equivalent to adding the constraints pt = pt+1 for
t = 1, . . . , T − 1, to the ELSP′ formulation. This restriction of the problem leads
to a very different algorithm for solving the problem, because the problem can no
longer be solved by decomposition into smaller time horizons, and the shortest path
solution we described is no longer possible. However, as we know that for any given
price p = p1 = p2 = · · · = pT , the problem again reduces to the ELSP. Thus, we
know that an optimal solution exists that satisfies the ZIO property and that may
be completely characterized by the sequence of order periods. That is, if we know
there are ρ order periods t1, t2, . . . , tρ , then the corresponding ZIO solution produces
∑tj+1−1

τ=tj
Dτ (p) in period tj for j = 1, . . . , ρ. We will refer to a specific set of order

periods t1, t2, . . . , tρ as an order plan. Kunreuther and Schrage [22] assume that
demand in any period t is a linear function of a price effect function d(p), which is
time invariant. That is, Dt(p) = αt + βtd(p) for t = 1, . . . , T , where αt and βt are
nonnegative constants for each period t . For the special case in which d(p) = −p,
we have the familiar linear price–demand function Dt(p) = αt − βtp.

Observe that, given any price p, a vector of demands [D(p)] =
[D1(p), . . . ,DT (p)] results. The revenue associated with this demand vector equals
∑T

t=1 pDt(p). The cost associated with this vector of demands depends on the or-
der plan utilized (we confine ourselves to the order plans defined in the previous
paragraph, since we know that an optimal solution exists from among these solu-
tions). As shown in [22], the cost of any order plan can be expressed as a linear
function of the price effect d(p). Assuming d(p) = −p, or a linear price–demand
relationship in each period, this implies that the minimum cost as a function of p

is a piecewise linear and concave function of p, where each linear segment cor-
responds to a specific order plan. If we can specify this piecewise linear function,
or envelope, then it is possible to evaluate the maximum profit associated with ev-
ery candidate order plan contained in an optimal solution. In this case, for each
segment of the piecewise linear function, we can compute the optimal price for
the given order plan. Specifying this piecewise linear function is not trivial, how-
ever.
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Kunreuther and Schrage [22] suggest a heuristic approach that assumes the op-
timal price must fall on some interval [pL,pU ]. We next briefly sketch the way
this heuristic works. First, recall that for any fixed price, the problem reduces to
an ELSP. Thus, we can initially solve the problem at the price pL, which requires
solving an instance of the ELSP. This solution provides an optimal order plan at the
price pL. The cost of this order plan is linear in price, and the associated line must
form a segment of the piecewise linear concave envelope. Given this order plan,
we next determine the price that maximizes profit when restricting ourselves to this
particular order plan. If this price differs from pL, then we can solve the ELSP cor-
responding to this new price. If the optimal order plan differs from the previous one,
then we have identified an additional segment of the piecewise linear concave enve-
lope. We continue this procedure iteratively, until the price and order plan converge.
Call the resulting price after convergence p∗

L. We then repeat this process using the
starting price pU , and converging to the price p∗

U . As shown in [22], the optimal
price, p∗, satisfies p∗

L ≤ p∗ ≤ p∗
U .

Gilbert [15] considered a special case of this model in which costs are time-
invariant and Dt(p) = βtd(p). For this case, he showed that the piecewise linear
concave envelope has at most O(T ) segments, and that these segments can be iden-
tified in polynomial time. Van den Heuvel and Wagelmans [35] then provided an
algorithm that permits identifying the entire piecewise linear concave envelope for
the general case defined in [22]. Beginning with the solutions p∗

L and p∗
U , they show

how to identify whether an unidentified segment of the piecewise linear concave en-
velope exists by solving the problem at the intersection of the lines corresponding to
the optimal order plans at the prices p∗

L and p∗
U . If a new line segment is identified,

and its optimal price is also identified, this permits eliminating part of the interval
of uncertainty2 between p∗

L and p∗
U . This can then be repeated for any remaining

intervals of uncertainty. Because the number of order plans is finite, the procedure
is finite and must converge to an optimal price.

Gilbert [16] considered a multiple product lot sizing problem with shared but
time-invariant production capacities and a time-invariant price for each good. Deng
and Yano [10] and Geunes, Merzifonluoğlu, and Romeijn [14] subsequently con-
sidered the integrated pricing and lot sizing problem with production capacities.
Merzifonluoğlu, Geunes, and Romeijn [27] considered a class of aggregate planning
problems in which capacities, prices, and subcontracting levels served as decision
variables.

2.4 Knapsack Problems with Nonlinear Objectives

This section describes a class of continuous knapsack problems in which a set J of
n demands exists, as in our discussion of knapsack problems in Chap. 1. In this class

2We define an interval of uncertainty as an interval which is known to contain the optimal price,
although the precise value of the optimal price remains unknown.
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of knapsack problems, however, the variable xj no longer corresponds to a binary
variable that determines whether or not demand j is selected. Instead, xj denotes
a variable corresponding to the percentage of some maximum level, Dj , at which
demand j may be satisfied. For example, Dj might correspond to the maximum
level of sales effort that may be applied in a market j or the maximum amount of
advertising expenditures that may be dedicated to product j . In each of these cases,
the activity level consumes part of a finite resource with capacity b (in the former
case this resource may be a salesperson’s time in a period, while in the latter this
resource may be a limited budget).

Associated with demand j is a revenue function Rj (xj ), which depends on the
activity level for demand j . We can formulate this nonlinear revenue maximizing
knapsack problem as follows:

[NLKP] Maximize
n∑

j=1

Rj (xj ) (2.16)

Subject to
n∑

j=1

Djxj ≤ b, (2.17)

0 ≤ xj ≤ 1, j = 1, . . . , n. (2.18)

Clearly if each Rj (·) function is linear in xj , then NLKP corresponds to the con-
tinuous relaxation of the knapsack problem KP defined in Chap. 1. If each Rj (·)
function is convex in xj , then an extreme point optimal solution also exists (as in
the relaxation of KP). It is straightforward to show that extreme point solutions for
NLKP contain at most one xj variable that takes a value strictly between zero and
one (moreover, for such extreme solutions, the resource capacity constraint (2.17)
is tight). Using this fact, [4] provides a pseudopolynomial time algorithm under
convex revenue functions that runs in O(Un2b) time in the worst case, where U

denotes the maximum value of Dj over all j ∈ J (assuming that b and all Dj are
integer). When all revenue functions are concave, the NLKP is a convex program
and can therefore be solved using standard nonlinear optimization solvers. More
general so-called S-curve return functions are considered in [2] and [17]. These
functions arise in numerous marketing contexts such as advertising, where small
levels of investment provide increasing returns to scale, and larger investment levels
lead to decreasing returns to scale. Such S-curve functions are convex from zero to
an inflection point, and then are concave thereafter. Analysis of the special structure
of these revenue functions leads to pseudopolynomial time solution methods (see
[2, 17]).

Additional classes of generalized knapsack problems with demand flexibility will
arise in our study of decomposition methods for assignment and location models in
Chap. 8. Moreover, in our analysis of EOQ models in Chap. 3 and in our discussion
of newsvendor models in Chap. 4, several interesting nonlinear and nonseparable
knapsack problems will arise.
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2.5 Location and Assignment Problems with Flexible Demand

Location theory has been well studied in the economics and operations research
literature under a number of assumptions. Much of the literature on location the-
ory with price effects applies game-theoretic analysis in competitive settings. This
body of literature simultaneously considers the objectives of multiple competing or-
ganizations, each of which wishes to maximize its profit based on its location and
market-supply decisions. A discussion of the models and approaches for this class
of problems may be found in [11] and [34]. The models we consider, and which
are most relevant to the work considered throughout this book, are more appropriate
for a single firm who is a monopolist, and thus wishes to make location decisions
based on response to a price–demand curve for its product (and independent of other
firms’ decisions).

Wagner and Falkson [36] provided perhaps the earliest model for a facility loca-
tion problem facing a single monopolistic producer of a good with price-sensitive
demand. This model considered the location of public facilities under the maximiza-
tion of social welfare and several different assumptions on the level of service that
must be provided to customers. Hansen and Thisse [19] then provided a model for
a private firm seeking to simultaneously determine price and location decisions in
order to maximize profit when demand is price-dependent. Erlenkotter [12] general-
ized their approach to account for the profit maximization objectives of private and
public firms within a single model. He provided a heuristic algorithmic approach
based on Lagrangian relaxation and explicitly considered situations in which the
revenue in a customer market is a quadratic function of price. The models we have
discussed thus far permit charging different prices to individual markets, where the
optimal price in a market depends on which facility serves the market at optimality.
Hansen, Thisse, and Hanjoul [20] modeled the problem when the delivered price
must be the same for all markets. Hanjoul et al. [18] later provided models that
allowed different methods of consistent pricing among customers (that is, they con-
sidered the case in which the delivered price is the same for all customer markets, as
well as the case in which all customers pay the same mill price, i.e., the price before
bearing transportation costs from the supply point).

Although work on the generalized assignment problem (GAP) with pricing is
quite limited, a rich set of models exists in the marketing literature for determin-
ing the optimal amount of limited salesforce effort to exert in different territories
(see, e.g., [26, 40]). In these models, a salesperson’s time corresponds to a lim-
ited resource, and sales territories must be assigned to sales personnel. Given an
assignment of territories to a salesperson, the time the salesperson spends in each
territory must also be determined, where the sales response (or revenue function, as
in the NLKP) in a territory is a nonlinear function of the time spent in the territory
(or the effort exerted). Thus, the sales level within each territory (i.e., the demand)
effectively serves as a decision variable that is determined via the level of sales
effort.
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14. Geunes J, Merzifonluoğlu Y, Romeijn H (2009) Capacitated Procurement Planning with
Price-Sensitive Demand and General Concave Revenue Functions. European Journal of Op-
erational Research 194:390–405

15. Gilbert S (1999) Coordination of Pricing and Multiple-Period Production for Constant Priced
Goods. European Journal of Operational Research 114:330–337

16. Gilbert S (2000) Coordination of Pricing and Multiple-Period Production Across Multiple
Constant Priced Goods. Management Science 46:1602–1616

17. Ginsberg W (1974) The Multiplant Firm with Increasing Returns to Scale. Journal of Eco-
nomic Theory 9:283–292

18. Hanjoul P, Hansen P, Peeters D, Thisse J (1990) Uncapacitated Plant Location under Alterna-
tive Spatial Price Policies. Management Science 36(1):41–57

19. Hansen P, Thisse J (1977) Multiplant Location for Profit Maximization. Environment and
Planning A 9:63–73

20. Hansen P, Thisse J, Hanjoul P (1980) Simple Plant Location under Uniform Delivered Pricing.
European Journal of Operational Research 6:94–103

21. Karlin S, Carr C (1962) Prices and Optimal Inventory Policy. In Studies in Applied Probabil-
ity and Management Science (Arrow K, Karlin S, Scarf H (eds.)) Stanford University Press,
Stanford, CA, 159–172

22. Kunreuther H, Schrage L (1973) Joint Pricing and Inventory Decisions for Constant Priced
Items. Management Science 19(7):732–738

23. Ladany S, Sternlieb A (1974) The Interaction of Economic Ordering Quantities and Marketing
Policies. AIIE Transactions 6(1):35–40

24. Lee W (1994) Optimal Order Quantities and Prices with Storage Space and Inventory Invest-
ment Limitations. Computers and IE 26(3):481–488

25. Lee W, Kim D (1993) Optimal and Heuristic Decision Strategies for Integrated Production
and Marketing Planning. Decision Sciences 24(6):1203–1213



24 2 Production and Inventory Planning Models with Demand Shaping

26. Lodish L (1971) CALLPLAN: An Interactive Salesman’s Call Planning System. Management
Science 18:4 Part II:25–40
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Chapter 3
EOQ-Type Models with Demand Selection

Abstract This chapter discusses a generalized version of the economic order quan-
tity (EOQ). In particular, we consider a situation in which a single inventory stage
must select from among a set of demand streams, those which it will satisfy. Each
demand stream carries with it a constant demand rate as well as a constant revenue
rate. We consider several problem variants within this class, including problems
with lot size and demand rate constraints.

3.1 Unconstrained EOQ Problems with Market Choice

The problems and results discussed in this chapter are based on work previously
published in [2], which contains detailed results on this problem class. We will first
consider a generalization of the standard EOQ model in Sect. 3.1.1 (with an infinite
production rate), and then extend the results to the case with a finite production rate
in Sect. 3.1.2.

3.1.1 Standard EOQ with Market Choice

We consider a set J of n markets, indexed by j , where market j demand occurs at
a constant rate of Dj units per unit time. In the analysis of the basic EOQ problem
in Chap. 1, a single “market” existed and the supplier was required to serve all of
this market’s demand. In the EOQ problem with market choice (EOQMC), the sup-
plier can choose whether or not to serve the demand in each market. If the supplier
chooses to satisfy demand in market j , it must satisfy all of the market’s demand
without any shortages. We therefore define a set of binary variables, where xj equals
one if the supplier meets all demand in market j , and zero otherwise. Thus, given
the values of these variables, the single stage faces a demand rate equal to

∑

j∈J

Djxj . (3.1)
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Under this demand rate, the optimal batch order quantity equals

Q∗(x) =
√

2S
∑

j∈J Djxj

H
, (3.2)

where x denotes an n-dimensional binary vector of xj values. If rj denotes the net
revenue per unit of demand sold in market j (in excess of the variable cost C), then
if the supplier satisfies demand in market j , the average revenue per unit time from
market j equals Rj = rjDj . Thus, the average total revenue per unit time can be
expressed as

∑

j∈J

Rjxj . (3.3)

Referring back to Eq. (1.4), we can express average profit per unit time from market
selection decisions, Π(x), as

Π(x) =
∑

j∈J

Rjxj −
√

2SH
∑

j∈J
Djxj . (3.4)

The supplier wishes to maximize Π(x) over all x vectors in Bn, the space contain-
ing all n-dimensional binary vectors. The following result, from [3], will be utilized
in solving this problem as well as additional problems in this chapter and the next.

Property 3.1 Consider the problem maxx∈Bn{∑j∈J Rjxj −
√∑

j∈J κj xj }, with

κj > 0 for all j = 1, . . . , n. Assuming demands are sorted in nonincreasing order of
the ratio Rj/κj , if an optimal solution exists with xk = 1 for some index k, then an
optimal solution exists with xk−1 = 1.

Proof Because the objective function is convex in x, this implies that an extreme
point solution exists for solving the relaxation in which the requirement x ∈ Bn

is replaced with 0 ≤ xj ≤ 1 for all j = 1, . . . , n. Observe that the objective is dif-
ferentiable for x ≥ 0 everywhere except at x = 0. Thus, the Karush–Kuhn–Tucker
(KKT) optimality conditions are necessary for an optimal solution (see [1]), ex-
cept possibly at the point x = 0, where average profit per unit time equals zero. We
can therefore consider all KKT points, along with the solution x = 0 in searching
for an optimal solution. Let α0

j (α1
j ) denote the KKT multiplier associated with the

constraint −xj ≤ 0 (xj ≤ 1). The associated KKT conditions can be written as

Rj − κj

2
√∑

j∈J κj xj

− α1
j + α0

j = 0, ∀j ∈ J, (3.5)

α0xj = 0, ∀j ∈ J, (3.6)

α1(1 − xj ) = 0, ∀j ∈ J, (3.7)

0 ≤ xj ≤ 1, ∀j ∈ J, (3.8)

α0
j , α

1
j ≥ 0, ∀j ∈ J. (3.9)
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Because all extreme point solutions are binary, we only need to consider such solu-
tions. Thus, each xj equals zero or one. If xj = 1, then we must have α0

j = 0, which
implies

Rj

κj

≥ 1

2
√∑

j∈J κj xj

, (3.10)

and if xj = 0, then we must have α1
j = 0, which implies

Rj

κj

≤ 1

2
√∑

j∈J κj xj

. (3.11)

Because the right-hand side of (3.11) is the same as that of (3.10), and this value is
fixed at any point, this implies a strict ordering of Rj/κj values. (We assume these
ratios are unique. If two or more demands exist with an identical ratio, we combine
them into a single demand.) If we index demands based on this ratio, and if (3.10)
holds for demand k, it must also hold for demand k − 1. Therefore, if a KKT point
exists such that xk = 1, then a KKT point also exists with xk−1 = 1. The necessity
of the KKT conditions implies the result.1 �

This property implies that we can index demands in nonincreasing order of
Rj/Dj = rj , or unit revenue values, and an optimal solution will be of the form
xj = 1 for j = 1, . . . , k and xj = 0 for j = k + 1, . . . , n, for some k between one
and n. There are n solutions of this form, and we can sort demands and compute the
average profit per unit time for each solution of this form in O(n logn) time. If the
solution with the maximum average profit per unit time among these n solution has
positive average annual profit, then this solution is optimal; otherwise an optimal
solution sets xj = 0 for all j ∈ J (and Q = 0).

3.1.2 The EPQ Problem with Market Choice

The standard EOQ model discussed in the previous section is sometimes referred to
as having an infinite production rate, which is equivalent to the special case in which
the delivery lead time equals zero. When the rate at which inventory is accumulated
by the supplier is finite, the EOQ model must be generalized to account for this.
Suppose that the supplier may only add to its inventory at a finite rate of P units per
unit time. We will assume that this rate exceeds the maximum market demand rate
(otherwise, accommodating this market without shortages would not be possible).
Accounting for the effects of a finite production rate in the standard EOQ problem

1Note that this result can be shown by contradiction and using an interchange argument. That is,
we suppose we have an optimal solution in which the property does not hold, and demonstrate that
either a solution exists with the same objective function value satisfying the property, or that the
initial solution is not optimal, a contradiction.
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without market choice results in only a slight modification, which is often viewed as
an adjustment to the holding cost by multiplying by a constant factor. The resulting
model is often referred to as the economic production quantity (EPQ). Accounting
for a finite production rate in the EOQ with market choice is a bit more involved,
but leads to a similar result.

Under a finite production rate P , the average fixed order and holding costs per
unit time for the standard EPQ model with demand rate D at the optimal order
quantity may be written as

√

2SDH

(
1 − D

P

)
. (3.12)

Using (3.12), along with market choice decision variables, the average profit
function per unit time for the EPQ with market choice (EPQMC) problem is written
as

ΠP (x) =
∑

j∈J

Rjxj −
√√√√2SH

(∑

j∈J

Djxj

)(
1 −

∑
j∈J Djxj

P

)
. (3.13)

We can show that ΠP (x) is convex in x (see [2]), and, as a result, a binary optimal
solution exists when maximizing this function over [0,1]n, i.e., we can solve the
continuous relaxation and obtain a binary optimal solution. As is shown in [2], the
algorithm used to solve the EOQMC can be used to find an optimal solution for
the EPQMC problem as well. We still index items in nonincreasing order of unit
revenue (rj ) values and evaluate all solutions of the form xj = 1 for j = 1, . . . , k

and xj = 0 for j = k + 1, . . . , n, for some k between one and n. The only difference
lies in the evaluation of the average profit per unit time for each solution vector,
which uses (3.13) instead of (3.4).

3.2 EOQMC Problems with Constraints

Practical production and inventory planning problems must often incorporate prac-
tical constraints due to space, budget, or technological limits. We next consider the
implications of certain types of constraints on the problems discussed in the previ-
ous section. These problems lead to interesting classes of knapsack problems with
nonlinear objectives. We will first consider limits on the volume of demand that may
be satisfied per unit time, followed by batch size constraints.

3.2.1 Demand Rate Constraints

Under a limit on the amount of demand that may be satisfied per unit time, we have
a constraint of the form ∑

j∈J

Djxj ≤ b, (3.14)
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where b is the maximum demand rate that may be handled. While the nonlinear
knapsack problem that results from maximizing either (3.4) or (3.13) over all x ∈
{Bn ∩ (3.14)} is in general difficult (the recognition version in either case is N P-
Complete), we can solve the continuous relaxations reasonably easily, as shown
in [2].

For the EOQMC with the demand rate constraint, for example, an optimal so-
lution to the continuous relaxation will exist at an extreme point, where extreme
points correspond to either binary vectors that are feasible for (3.14), or solutions in
which (3.14) is tight and at most one xj variable is strictly between zero and one.
The binary solutions generated in the algorithm for solving the unconstrained EO-
QMC that are feasible for (3.14) dominate all other binary vectors that are feasible
for the constraint. Thus, we need to consider these solutions along with an optimal
solution when (3.14) is tight in order to solve the continuous relaxation of the con-
strained problem. Fortunately, when (3.14) is tight, the square root terms in (3.4)
and (3.13) become fixed constants. Thus, when the constraint is tight, the problem
becomes a simple continuous linear knapsack problem, which is solved by insert-
ing items into the knapsack in nonincreasing order of rj values until the capacity
is exhausted. Clearly this solution contains at most one fractional xj , and a solu-
tion that is feasible for the binary restrictions can be obtained by simply setting the
value of this fractional variable to zero. This rounding down heuristic is shown to be
asymptotically optimal in the number of items in [2], under mild assumptions on the
distributions of parameter values and the behavior of the capacity (and production
rate, for the EPQMC) as n → ∞. Because the continuous relaxation is relatively
tight (and it has an optimal solution with at most one fractional variable), solution
via customized branch-and-bound is generally quite effective.

3.2.2 Batch Size Constraints

In some contexts, a limit may exist on the maximum amount that may be produced
or delivered in response to an order (due to, e.g., space limits, transportation capacity
limits, or production technology restrictions). In this case, the associated constraint
may be written very simply as

Q ≤ b. (3.15)

We illustrate the analysis of the problem under constraint (3.15) for the EOQMC
case; for details on the EPQMC case, please see [2]. Recall that the unconstrained
optimal order quantity is given in Eq. (3.2). However, given any binary vector x, it
is possible to employ a batch size Q that is feasible for constraint (3.15), but does
not take the form of an EOQ solution as in (3.2). We therefore consider two solution
types. The first type of solution uses batches from the EOQ formula that are also
feasible for (3.15). For these solutions, the batch size constraint may be written as

∑

j∈J

Djxj ≤ b2H

2S
, (3.16)
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which is exactly the form of constraint (3.14). Thus, we can use the methods de-
scribed in the previous section for characterizing the best among solutions of this
type.

The second type of solution is characterized by x vectors whose corresponding
EOQMC batch size formula (3.2) is infeasible for (3.15). For such solution types,
the convexity of the average costs per unit time in Q imply that constraint (3.15)
must be tight, i.e., Q = b. When this is the case, the average holding plus fixed
order costs per unit time as a function of the vector x, denoted as AC(x), may be
written as

AC(x) = S
∑

j∈J Djxj

b
+ Hb

2
. (3.17)

Finding the best solution of this type then requires solving the following problem:

Maximize
n∑

j=1

(
rj − S

b

)
Djxj − Hb

2
(3.18)

Subject to xj ∈ {0,1}, j = 1, . . . , n. (3.19)

The above problem is easily solved by inspection by setting xj = 1 for each demand
j such that rj > S/b (interestingly, this solution may also be obtained exactly as be-
fore: by sorting demands in nonincreasing order of unit revenue values and evaluat-
ing all solutions of the form xj = 1 for j = 1, . . . , k and xj = 0 for j = k +1, . . . , n,
for some k between one and n). The resulting solution serves as the best solution of
its type, and its average profit per unit time must then be compared with that of the
best solution of the first type.
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Chapter 4
Single-Period Stochastic Inventory Planning
with Demand Selection

Abstract This chapter deals with a generalization of the single-period newsven-
dor problem. We consider a setting in which a decision maker at a single stocking
point must determine the stock level for a single product under uncertain demand.
In addition to determining the item’s stock level, the decision maker must select a
subset from a set of individual demands, each of which is uncertain and follows a
particular probability distribution. Assuming normally distributed and independent
demand streams results in a class of problems that are strikingly similar to the prob-
lems considered in the previous chapter, although the underlying model assumptions
are quite different.

4.1 The Selective Newsvendor Problem

We will first consider the basic version of what is referred to as the selective
newsvendor problem (SNP), in which we must select a number of demand streams,
along with a single stock level that will be used to satisfy these demand streams in
a single-period setting. Following this, we consider more general contexts in which
the decision maker can influence the distribution of each demand stream through
marketing effort. Then we examine problems in which a limited marketing budget
exists. Finally, we end the chapter by discussing a generalization of the problem in
which price is a decision variable that directly influences the distribution parame-
ters for each demand stream. The results in this chapter are based on more detailed
analyses provided in [1] and [3].

4.2 The Basic SNP

Under the most basic version of the SNP, we consider a set J of n stochastic, single
period demands, indexed by j . We assume throughout that each of these demands
is normally distributed, that demand j has mean μj and standard deviation σj , and
that all demand distributions are statistically independent. We assume that the prod-
uct’s unit procurement, holding and shortage costs are independent of the demand,
although we permit demand-specific revenue values. That is, we define rj as the
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per-unit net revenue for demand j (in excess of the unit cost C). Letting xj denote
a binary variable equal to one if we select demand j (and zero otherwise), then the
aggregated demand for the product is normally distributed with mean

∑
j∈J μjxj

and standard deviation
√∑

j∈J σ 2
j xj . Using the single-period inventory model de-

fined in Eq. (1.10), and replacing the per-unit net revenue term r = p − C with
the demand-specific net revenue associated with each demand rj , we can write the
single-period expected profit for the selective newsvendor as

Πn

(
Q∗, x

) =
∑

j∈J

rjμjxj − K
(
z∗)

√∑

j∈J
σ 2

j xj . (4.1)

Somewhat surprisingly, although the SNP model arises from a different set of mod-
eling assumptions, Eq. (4.1) has precisely the same mathematical form as the av-
erage profit per unit time equation for the EOQMC (see Eq. (3.4)). Property 3.1
immediately implies that we can maximize Πn(Q

∗, x) over all x ∈ Bn by indexing
demands in nonincreasing order of the ratio rjμj/σ

2
j , and evaluating the expected

profit for each of the n solutions of the form xj = 1 for j = 1, . . . , k and xj = 0 for
j = k + 1, . . . , n, for k = 1, . . . , n. If the solution with the maximum expected profit
among these n solutions has positive expected profit, then this solution is optimal;
otherwise an optimal solution sets xj = 0 for all j ∈ J (and Q = 0).

4.3 The SNP with Market Effort

The SNP model in the previous section assumes that the distribution of each demand
has fixed parameters. We now consider situations in which the supplier can influence
these parameters. For example, if each demand j corresponds to a market (or mar-
ket segment), then we permit the supplier to exert some effort to affect the market’s
demand distribution. This effort might, for example, come in the form of advertis-
ing expenditures. We assume that the amount of market effort exerted in market j ,
which we denote as aj , can be measured in discrete units, and that the cost per unit
of effort equals tj . We also assume that the expected demand (demand variance)
in market j can be expressed as a function of this market effort, and we express
this function as μj (aj ) (σ 2

j (aj )). These functions are assumed to be continuous,
nonnegative, nondecreasing in aj , and bounded. Further, we assume that a value δj

(Δj ) exists such that for all aj ≥ δj (aj ≥ Δj ), μj (aj ) = μ̄j (σ 2
j (aj ) = σ̄ 2

j ), i.e., a
threshold value exists such that these functions are constant (or “level off”) when
this threshold is exceeded. We further generalize the SNP model in this section to
permit a fixed cost for entry into market j , i.e., let Sj denote the fixed cost for selling
in market j . The following subsection considers the case in which market variance
is independent of market effort (i.e., σ 2

j (aj ) = σ 2
j for all aj ≥ 0), followed by the

case in which market variance may depend on market effort.
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4.3.1 Market Variance Independent of Market Effort

When each market’s variance is independent of market effort, we need to first deter-
mine the optimal effort exerted in market j , if we choose market j . This is accom-
plished by determining the value of aj that maximizes θj (aj ) = rjμj (aj ) − tj aj .
The difficulty of determining this value of aj depends on the functional form of
μj (aj ). If, for example, each function θj (aj ) is differentiable and concave, then a
simple first-order condition is all that is required for identifying an optimal value of
aj , denoted by a∗

j . This first-order condition can be written as

dμj (a
∗
j )

daj

= tj

rj
. (4.2)

Letting R∗
j = rjμj (a

∗
j ) − tj a

∗
j − Sj , then we can determine an optimal solution for

the case in which expected demand depends on market effort by maximizing

Πn

(
Q∗, x

) =
∑

j∈J

R∗
j xj − K

(
z∗)

√∑

j∈J
σ 2

j xj , (4.3)

over all x ∈ Bn. Clearly (4.3) takes the same form as (4.1), and we can solve this
problem using the sorting approach we have described based on the ratios R∗

j /σ 2
j

for j = 1, . . . , n.

4.3.2 Market Variance Dependent on Market Effort

When each market’s demand variance also depends on the level of market effort,
then the functional form of each μj (aj ) and σ 2

j (aj ) function determines the prob-
lem’s overall complexity. In [3], specific functional forms are assumed, which may
be characterized as follows. Each expected demand function μj (aj ) is an approx-
imate S-curve function that is nonnegative and continuous for all aj ≥ 0, strictly
convex and increasing in aj for 0 ≤ aj ≤ αj , linearly increasing for αj ≤ aj ≤ δj

(with a slope at least as great as the limit of the derivative of the strictly convex por-
tion as aj → αj ), and fixed at μ̄j for aj ≥ δj . The variance function is nonnegative,
continuous, concave, and nondecreasing for all aj ≥ 0, with σ 2

j (aj ) = σ̄ 2
j for all

aj ≥ Δj for some positive Δj . Under these assumptions, it is shown in [3] that the
optimal effort level in market j , if market j is selected, must equal either 0 or δj .
Assuming that the fixed cost of market entry, Sj , is at least as great as the expected
net revenue at zero effort (at aj = 0), then we can set R∗

j = rjμj (δj ) − tj δj − Sj

(which is equivalent to setting a∗
j = δj in our approach in the previous subsection),

and apply the same sorting-based solution approach as before, again using the ratio
R∗

j /σ 2
j .
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4.4 The SNP with Limited Market Resources

In most situations, resources required for marketing effort are not unlimited. We
therefore assume that the total amount of market effort is limited by some value
b. For ease of exposition, we assume that μj (0) = 0, σ 2

j (0) = 0, and Sj > 0 for

all j ∈ J .1 Note that this implies Sj > rjμj (0) for all j ∈ J . We also assume that
μj (aj ) is convex and that σ 2

j (aj ) is concave, in addition to the previous assumptions
we have stated regarding these functions. We formulate the SNP with limited market
resources as follows:

[SNPM] Maximize
∑

j∈J

(
Rj (aj ) − tj aj − Sj

)
xj − K

(
z∗)

√∑

j∈J

σ 2
j (aj )xj

(4.4)

Subject to
∑

j∈J

aj ≤ b, (4.5)

xj ∈ {0,1}, ∀j ∈ J, (4.6)

where Rj (aj ) = rjμj (aj ). The SNPM formulation is quite complicated for several
reasons, not the least of which is the presence of the product of continuous functions
of continuous variables and binary variables. Unlike the approach in the previous
section, the aj values are no longer independent, and we cannot, therefore, simply
determine the optimal value of aj by maximizing θj (aj ) over aj ≥ 0. Our goal
is therefore to provide an effective method for efficient solution of the continuous
relaxation of SNPM, which can then be used within a branch-and-bound scheme.

To this end, observe that aj ≤ δj xj is a valid inequality for SNPM for all j ∈ J ,
as μj (aj ) = μ̄j for j ≥ δj . We next define a new set of continuous variables wj

for j ∈ J , such that wj = aj/δj , which implies that we can confine our attention to
continuous values of wj between zero and one, and we can rewrite the SNPM as

Maximize
∑

j∈J

(
Rj (δjwj ) − tj δjwj − Sjxj

) − K
(
z∗)

√∑

j∈J

σ 2
j (δjwj ) (4.7)

∑

j∈J

δjwj ≤ b, (4.8)

xj ∈ {0,1}, ∀j ∈ J, (4.9)

0 ≤ wj ≤ xj , ∀j ∈ J. (4.10)

We next observe that if we do not select market j , which implies xj = 0, then
an optimal solution exists such that wj = 0, i.e., we can change the right-hand

1For a detailed discussion of the more general case in which μj (0) > 0 and σ 2
j (0) > 0, please see

[3].
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side of each constraint in constraint set (4.10) to one without loss of optimality.
We can actually demonstrate a stronger result for the continuous relaxation (see
[3]). That is, when we relax (4.9) to permit xj ∈ [0,1] for each j ∈ J , then we
can show that an optimal solution exists for this relaxation such that wj = xj ,
which is equivalent to aj = δj xj . Next, note that because μj (aj ) is convex, we
have μj (δj xj ) ≤ μj (δj )xj ; similarly, because σ 2

j (aj ) is concave we also have

σ 2
j (δj )xj ≤ σ 2

j (δj xj ).
As a result, we obtain the following formulation for solving the continuous re-

laxation of SNPM:

Maximize
∑

j∈J

R̃j (δj )wj − K
(
z∗)

√∑

j∈J

σ 2
j (δj )wj (4.11)

Subject to
∑

j∈J

δjwj ≤ b, (4.12)

0 ≤ wj ≤ 1, ∀j ∈ J, (4.13)

where R̃j (δj ) = Rj (δj )− tj δj −Sj . The objective function of the above problem is
precisely the same as that of the SNP and EOQMC problems. However, the knap-
sack constraint (4.12) complicates the problem and leads to an interesting class of
nonlinear knapsack problems. Unfortunately, this problem is not as nicely structured
as the nonlinear knapsack problems considered in the previous chapter. Despite this,
it is possible to solve this relaxation in O(n3) time, as shown in [2]. For a detailed
discussion of a customized branch-and-bound algorithm for solving SNPM, please
see [3].

4.5 The SNP with Pricing

So far in this chapter, we have not considered the impact of pricing on the solution of
the SNP. We next consider a profit-maximizing model in which prices are decision
variables. We first consider the case in which no price discrimination is possible,
i.e., the price must be the same for every market. We then discuss the problem when
price discrimination is permitted.

4.5.1 Equal Market Prices

The SNP with equal market prices, which we denote by SNPP=, can be formulated
as follows:

[SNPP=] Maximize
∑

j∈J

Rj (p)xj − K
(
z∗)

√∑

j∈J

σ 2
j (p)xj (4.14)

Subject to xj ∈ {0,1}, ∀j ∈ J, (4.15)
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where Rj (p) denotes the expected net revenue in market j as a function of price p,
and σ 2

j (p) denotes the variance in market j as a function of p. We assume that for
each market, some maximum price level exists such that for prices exceeding this
level, demand in the market equals zero. Let p0

j denote the price in market j such

that for p ≥ p0
j , demand in market j equals zero. Note that for any fixed price, p,

the above problem becomes the basic SNP, and can thus be solved efficiently based
on our ratio sorting scheme, using the ratio Rj (p)/σ 2

j (p). When the price varies,
however, the ratio ordering of the markets may change. If we can characterize a
manageable set of price intervals such that the ratio ordering within an interval does
not change, then we can solve an SNP problem for each interval and determine the
best price for that interval.

Let Pij denote the critical price value at which the preference ratios for markets
i and j are equal, i.e.,

Pij =
{

C ≤ p ≤ min
{
p0

i , p
0
j

} : Ri(p)

σ 2
i (p)

= Rj(p)

σ 2
j (p)

}

, (4.16)

where we assume that the price must be greater than or equal to the unit variable
cost C. We assume that a finite number of such critical price levels exists according
to (4.16) (the number of prices satisfying (4.16) depends on the functional forms of
the revenue and variance functions, but this number is often one for simple forms of
these functions; if this is the case, then the total number of such critical price levels
is O(n2)). Given these values, we create an ordered list of price values, denoted by
pk for k = 1, . . . , V , containing each Pij value, plus all p0

j values. This sequence is

defined as c = p0 < p1 < · · · < pV . Within an interval (pk,pk+1), the ratio order-
ing for all markets does not change. Moreover, for consecutive intervals (pk−1,pk)

and (pk,pk+1), the rank order of markets will be the same except for markets i and
j , when pk ∈ Pij . This implies that we only need to rank order the markets once,
and then switch the order of the appropriate markets when moving from one interval
to the next. Within each price interval (pk−1,pk), we solve n optimization problems
of the form

Maximizep∈(pk−1,pk)

{
l∑

j=1

Rj(p) − K
(
z∗)

√
√
√
√
√

l∑

j=1

σ 2
j (p)

}

, (4.17)

for l = 1, . . . , n. If one value exists that satisfies (4.16) for each pair of markets2,
then the total time required to determine an optimal solution is O(T n3), where we
assume that the time required to solve (4.17) is O(T ).

2Please see [1] for a discussion of fairly general models for which this property holds, i.e., at most
one value exists satisfying (4.16) for each pair of markets.
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4.5.2 SNP with Market Price Discrimination

We next consider the case in which different prices may be set for individual mar-
kets. For this case, we let pj denote the price in market j , and we assume that a
price p0

j exists such that for all pj ≥ p0
j , both the revenue function Rj (pj ) and the

variance function σ 2
j (pj ) equal zero. This allows formulating the problem without

binary selection variables, since we can force both zero revenue and zero cost in a
market by setting a sufficiently high price for that market. We can therefore formu-
late the problem with individual market prices as follows:

[SNPP�=] Maximize
∑

j∈J

Rj (pj ) − K
(
z∗)

√∑

j∈J

σ 2
j (pj ) (4.18)

Subject to 0 ≤ pj ≤ p0
j , ∀j ∈ J. (4.19)

If the revenue function is concave in price and the variance function is convex in
price, then this problem is a convex program. In this case, we can show that an op-
timal solution exists such that either all markets are “selected” or none are selected
(see [1]; of course, a market may be selected in the sense that an arbitrarily small
but positive demand level is satisfied).
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Chapter 5
Dynamic Lot Sizing with Demand Selection
and the Pricing Analog

Abstract This chapter defines a model for production planning for a single product
in a periodic setting, where the planner must select from a number of individual
orders for the product. Associated with any order are a demand quantity, delivery
period, and revenue. Acceptance of an order implies that it must be met on time and
in full. Orders are placed in advance of the planning horizon, and the planner must
determine which orders to accept as well as a production plan for meeting these
orders on time over a finite horizon. Production in any period carries a fixed order
cost as well as variable production costs, and inventory may be held from period
to period, incurring an associated holding cost. The planner’s goal is to maximize
profit from order acceptance decisions over the planning horizon.

5.1 Demand Selection Problem Definition

The model we consider in this chapter generalizes the ELSP, discussed in Chap. 1,
and is intimately related to the ELSP with pricing presented in Chap. 2, as we later
discuss in Sect. 5.4. In this section we formally define the demand selection problem
(DSP), while the remainder of this chapter provides a solution algorithm (Sect. 5.2),
discusses the implications of capacity limits on production (Sect. 5.5), and provides
an interpretation of the problem as an equivalent pricing and lot sizing problem
(Sect. 5.4). Much of the work presented in this chapter is based on [3].

Consider a single-item production planning problem for a finite planning horizon
of length T , where production occurs and demand is realized in a discrete set of
periods indexed by t . In advance of the planning horizon, a number of demands are
available, and each of these demands must be either accepted or rejected. Associated
with demand j in period t are a demand quantity, djt , and a per-unit revenue, rjt ;
thus, the total revenue associated with acceptance of demand j in period t equals
rjt djt . We assume without loss of generality that nt demands exist in period t , and
that demands within any period are indexed in non-increasing order of unit revenues,
i.e., rjt ≥ rj+1,t , for all t = 1, . . . , T and j = 1, . . . , nt − 1.

Let wjt denote the percentage of demand j in period t that is fulfilled, i.e., wjt is
a continuous variable between zero and one (as we later show, an optimal solution
will exist in which each wjt is strictly zero or one in the absence of capacity lim-
its). The total demand that must be met in period t , which depends on the demand
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acceptance decisions, equals
∑nt

j=1 djtwjt . Using the notation and parameter and
decision variable definitions used for the ELSP, we formulate the DSP as follows:

[DSP] Maximize
T∑

t=1

{
nt∑

j=1

rjt djtwjt − Styt − CtQt − HtIt

}

(5.1)

Subject to It = Qt + It−1 −
nt∑

j=1

djtwjt , t = 1, . . . , T , (5.2)

Qt ≤ Mtyt , t = 1, . . . , T , (5.3)

I0 = 0, Qt , It ≥ 0, t = 1, . . . , T , (5.4)

0 ≤ wjt ≤ 1, t = 1, . . . , T , (5.5)

j = 1, . . . , nt

yt ∈ {0,1}, t = 1, . . . , T . (5.6)

The DSP formulation is based on the standard formulation of the ELSP. This for-
mulation is not the tightest possible formulation, i.e., it is possible to reformulate
the problem such that the linear programming (LP) relaxation value provides a
better upper bound on the optimal solution to the DSP. This reformulation of the
LP relaxation is closely related to the facility location reformulation of ELSP dis-
cussed in Sect. 1.2.6. We begin by defining the modified revenue parameter ρjt =
djt (rjt +∑T

τ=t Ht ) as well as the modified cost parameter Ĉt = Ct +∑T
τ=t Ht . Sub-

stituting It = ∑t
τ=1 Qτ − ∑t

τ=1
∑nt

j=1 djtwjt and letting Qjtτ denote the number
of units produced in period t to satisfy demand j in period τ , we can reformulate
the DSP as follows:

[FDSP] Minimize
T∑

t=1

{

Styt + Ĉt

T∑

τ=t

nt∑

j=1

Qjtτ −
nt∑

j=1

ρjtwjt

}

(5.7)

Subject to
τ∑

t=1

Qjtτ = djτwjτ , τ = 1, . . . , T , (5.8)

j = 1, . . . , nτ ,
nt∑

j=1

Qjtτ ≤ Mtτyt , t = 1, . . . , T , (5.9)

τ = t, . . . , T ,

0 ≤ wjτ ≤ 1, τ = 1, . . . , T , (5.10)

j = 1, . . . , nτ

yt ,Qjtτ ≥ 0, t = 1, . . . , T , (5.11)

τ = t, . . . , T ,

j = 1, . . . , nt .
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The multiplier on the right-hand side of constraint set (5.9), Mtτ , is a large num-
ber that ensures the problem remains uncapacitated, and can be replaced with
Mtτ = ∑nτ

j=1 djτ without loss of optimality. To demonstrate the tightness of the
LP relaxation FDSP, the next section provides an algorithm for solving the dual of
FDSP. We then show that the resulting dual has an optimal solution with a comple-
mentary primal solution that is feasible for DSP, and therefore optimal. We note that
this reformulation and dual solution approach follow that shown in [6].

5.2 Dual Ascent Solution Algorithm

This section formulates the dual problem for FDSP and provides an algorithm for
solving this dual problem. We first define dual multipliers μjτ , ωtτ , and πjτ as-
sociated with primal constraints (5.8), (5.9), and the upper bounding constraints of
(5.10). We can then formulate the dual problem, DP, as follows:

[DP] Maximize
T∑

τ=1

nt∑

j=1

−πjτ (5.12)

Subject to
T∑

τ=t

nt∑

j=1

djτωtτ ≤ St , t = 1, . . . , T , (5.13)

djτμjτ + πjτ ≥ ρjτ , τ = 1, . . . , T , j = 1, . . . , nτ

(5.14)

μjτ − ωtτ ≤ Ĉt , t = 1, . . . , T , τ = t, . . . , T ,

(5.15)
j = 1, . . . , nt ,

πjτ ,ωtτ ≥ 0,μjτ unrestricted, t = 1, . . . , T , τ = t, . . . , T ,

(5.16)
j = 1, . . . , nt .

We observe from (5.15) that an optimal solution will exist such that ωtτ is equal to
the maximum between zero and μjτ − Ĉt for all t , τ , and j . In addition, because of
the form of the objective and constraint set (5.14), at optimality, we will have −πjτ

equal to the minimum between zero and djτμjτ − ρjτ for every j and τ . Based on
these observations, we can formulate DP much more compactly as follows:

[CDP] Maximize
T∑

τ=1

nt∑

j=1

min{0, djτμjτ − ρjτ } (5.17)

Subject to
T∑

τ=t

nt∑

j=1

djτ

(
max{0,μjτ − Ĉt }

) ≤ St , t = 1, . . . , T .

(5.18)
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Inspection of CDP leads to some interesting and useful observations. Note first that
an optimal solution exists such that μjτ is no greater than ρjτ /djτ for every j, τ

pair. Thus, for any j, τ pair such that mint=1,...,τ Ĉt ≥ ρjτ /djτ , the variable μjτ

can be set to its maximum value of ρjτ /djτ without consuming any constraint “ca-
pacity,” which implies that we can eliminate such variables from the formulation
immediately. Next, note that we can start with an initial feasible solution that sets
μjτ = mint=1,...,τ Ĉt for every j, τ pair. This initial solution does not consume any
of the capacity of any of the constraints (5.18). Beginning with this initial solution,
we will increase values of the μjτ variables in a specific order, resulting in what is
commonly called a dual ascent algorithm.

This algorithm begins by simultaneously increasing the values of all μj1 vari-
ables from their initial value of Ĉ1. That is, we create a set J 1

1 containing all orders
in period 1 that have not been eliminated. Increasing these variables consumes some
of the capacity, S1, of constraint 1, but does not affect any of the other constraints,
as the μj1 variables appear only in the first constraint. If μk1 hits the value ρk1/dk1

before constraint 1 becomes tight, then we remove order k from the set J 1
1 , insert

order k into the set J 0
1 , and we do not continue to increase the value of μk1 with

the other μj1 variables such that j ∈ J 1
1 . We continue simultaneously increasing the

μj1 values for all j ∈ J 1
1 , until either J 1

1 = ∅ or until the variables consume all of
the capacity of constraint 1. We therefore have

μj1 =

⎧
⎪⎨

⎪⎩

ρj1
dj1

, j ∈ J 0
1 ,

Ĉ1 +
S1−∑

j∈J0
1

dj1 max{0,ρj1/dj1−Ĉ1}
∑

j∈J1
1

dj1
, j ∈ J 1

1 .
(5.19)

We next move on to period 2, by inserting all orders in period 2 in the set J 1
2 , and

simultaneously increasing the values of all μj2 variables for j ∈ J 1
2 . A variable μk2

may be blocked from further increase because (a) it hits the value ρk2/dk2, in which
case order k is removed from J 1

2 and inserted in the set J 0
2 ; (b) constraint 2 becomes

tight; or (c) it hits the value Ĉ1 (and any further increase would violate constraint 1).
At this point we have

μj2 =

⎧
⎪⎨

⎪⎩

ρj2
dj2

, j ∈ J 0
2 ,

min{Ĉ1; Ĉ2 +
S2−∑

j∈J0
2

dj2 max{0,
ρj2
dj2

−Ĉ2}
∑

j∈J1
2

dj2
}, j ∈ J 1

2 .
(5.20)

We continue this approach for subsequent periods. In general, for period t , if J 1
t �= ∅,

then letting [x]+ = max{0, x}, we can write the value of μkt for k ∈ J 1
t using the

formula

μ∗
t = min

s≤t

{

Ĉs +
Ss − ∑t

τ=s

∑
j∈J 0

t
djτ

[ρjτ

djτ
− Ĉs

]+ − ∑t−1
τ=s

∑
j∈J 1

τ
djτ [μ∗

τ − Ĉs ]+
∑

j∈J 1
t

dj t

}

,

(5.21)
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which implies that we can write

μjt =
{

ρjt

djt
, j ∈ J 0

t ,

μ∗
t , j ∈ J 1

t ,
(5.22)

for t = 1, . . . , T and j = 1, . . . , nt . We can show that the dual solution above, ob-
tained via the dual ascent approach, solves DP (see [2]). We can obtain a comple-
mentary primal solution as follows. If constraint t is tight in an optimal solution,
then this implies that yt = 1 and an order is placed in period t ; otherwise yt = 0.
For order–period pair (j, t), if j ∈ J 0

t , then wjt = 0, and demand j in period t is not
selected. If j ∈ J 1

t , then demand j in period t is selected and wjt = 1. Moreover, for
any demand j ∈ J 1

t , μjt = μ∗
t , and production for the demand occurs in the period

s that gives the minimum in Eq. (5.21). This implies that for j ∈ J 1
t , if s∗(t) denotes

the index s that provides the minimum in (5.21), then Qjs∗(t)t = djt , and Qjst = 0
for all s �= s∗(t). Moreover, for all pairs (j, t) such that j ∈ J 0

t , Qjst = 0 for all
s = 1, . . . , T . This solution is clearly feasible for the DSP (including the binary
conditions), and we can show that its objective function value is the same as the cor-
responding complementary dual solution objective function value for DP (see [2]).
The resulting solution is therefore optimal for the DSP, and the formulation FDSP
therefore has zero integrality gap. If we let nmax = maxt=1,...,T {nt }, then we can
express the worst-case solution time of this dual ascent approach as O(nmaxT

2).

5.3 Shortest Path Solution Approach

This section describes a more direct approach for solving the DSP, using the short-
est path1 solution structure for the ELSP described in Sect. 1.2.3. Like the lot sizing
with pricing problem discussed in Sect. 2.3, for a given set of selected orders, the
DSP is equivalent to the ELSP. Recall that the shortest path graph structure for solv-
ing an instance of the ELSP contains T + 1 nodes, with an arc from node t to node
s + 1 if s ≥ t for all t = 1, . . . , T . Arc (t, s + 1) implies that production in period t

is used to satisfy demands in periods t through s. For the DSP, we create the same
graph structure, but we must solve a subproblem in order to determine which de-
mands should be selected if arc (t, s + 1) is used, for t = 1, . . . , T and s = t, . . . , T .
This allows us to associate a net profit level with each arc, and subsequently solve
the longest path problem on the resulting acyclic graph.

Solving the arc subproblem to determine the maximum profit associated with
the arc (t, s + 1) requires solving the following problem, where we again define
Ht,τ = ∑τ−1

u=t Hu:

Maximize φ(t, s + 1) =
s∑

τ=t

nτ∑

j=1

(rjτ − Ct − Ht,τ )djτwjτ (5.23)

1We actually solve a longest-path problem on an acyclic graph, although we use the shortest-path
terminology due to its prominent usage in the literature.
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Subject to wjτ ∈ {0,1}, τ = t, . . . , s, j = 1, . . . , nτ . (5.24)

For the given arc (t, s + 1), clearly we will select demand j in period τ such that
t ≤ τ ≤ s if rjτ > Ct + Ht,τ , i.e., if the unit revenue exceeds the variable costs
associated with the demand. If the optimal solution to the above subproblem, which
we denote as φ∗(t, s + 1), exceeds the fixed order cost St , then the arc is assigned a
net profit of φ∗(t, s + 1) − St . Otherwise, the arc is assigned a net profit of zero.

This solution approach is much easier to describe than the dual ascent method,
although its complexity is the same, equal to O(nmaxT

2). The dual ascent method,
however, enables demonstrating that the FDSP formulation has zero integrality gap,
i.e., that this formulation is tight.

5.4 Interpretation of the DSP as a Pricing Problem

Recall that the ELSP with pricing problem described in Sect. 2.3 assumed that de-
mand in each period was price dependent, using the function Dt(pt ) to express de-
mand in period t as a function of the price in period t , pt . The total revenue in this
model, contained in the first term of the objective function of [ELSP′], was equal to
ptDt (pt ). For many common forms of the demand function, Dt(pt ), the resulting
revenue function, equal to ptDt(pt ), is a concave function (for example, when the
demand function is linear in price). If we have a one-to-one correspondence between
the price in period t and the demand in period t , then, without loss of generality, we
can express the revenue function in a period as a function of either the price or the
demand in period t . If we choose the latter, then we can write the revenue function
in period t as the function Rt(Dt ). That is, replacing Dt(pt ) with Dt and replacing
ptDt (pt ) with Rt(Dt) in the formulation ELSP′ in Sect. 2.3 results in an equiva-
lent formulation in the demand variables. This reformulation may be expressed as
follows:

[ELSP′(D)] Maximize
T∑

t=1

{
Rt(Dt ) − Styt − CtQt − HtIt

}
(5.25)

Subject to It = Qt + It−1 − Dt, t = 1, . . . , T , (5.26)

Qt ≤ Mtyt , t = 1, . . . , T , (5.27)

Qt, It ,Dt ≥ 0, t = 1, . . . , T , (5.28)

yt ∈ {0,1}, t = 1, . . . , T . (5.29)

Suppose that we can approximate the revenue function in any period t as a piece-
wise linear, concave, and nondecreasing function of the demand level in period t ,
with nt + 1 segments. Letting rjt denote the slope of segment j of the revenue
function in period t , and assuming rjt > rj+1,t , then we can express this revenue
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function as

Rt(Dt ) =

⎧
⎪⎨

⎪⎩

∑k−1
j=1 rjtdjt + rkt (Dt − ∑k−1

j=1 djt ),
∑k−1

j=1 djt ≤ Dt <
∑k

j=1 djt ,

k = 1, . . . , nt ,
∑nt

j=1 rjtdjt , Dt ≥ ∑nt

j=1 djt .

(5.30)
Using this form of the revenue function in the lot sizing and pricing problem
ELSP′(D), then, for the subproblem corresponding to arc (t, s + 1), according to
Eq. (2.15), we need to solve

[PSP(D)] Maximize
s∑

τ=t

{
Rτ (Dτ ) − (Ct + Ht,τ )Dτ

}
. (5.31)

To model the revenue functions shown in Eq. (5.30), we create a binary variable
wjτ associated with the j th linear segment of the revenue function in period τ ,
for τ = 1, . . . , T , and j = 1, . . . , nτ + 1. The resulting arc profit subproblem takes
the exact form of (5.23)–(5.24) (with an additional zero-slope segment for every
period). Observe that because we are maximizing, we need not impose explicit con-
straints on the selection of different linear segments associated with the revenue
function in any given period, i.e., an optimal solution will select segments in nonin-
creasing order of segment slopes. Thus, this special case of the ELSP with pricing
and piecewise linear and concave revenue functions is equivalent to the DSP.

Before proceeding we note two additional properties of the arc subproblem
[PSP(D)] (which also hold for the arc subproblem expressed in (5.23)–(5.24), as
these problems are equivalent) for any arc (t, s + 1). First, note that explicit binary
restrictions on the wjτ variables are not required, as an optimal solution will exist
for the continuous relaxation such that each wjτ takes a value of zero or one. In par-
ticular, an optimal solution exists such that wjτ = 1 for every pair (j, τ ) such that
rjτ > Ct + Ht,τ , and wjτ = 0 for every (j, τ ) such that rjτ ≤ Ct + Ht,τ . This leads
to the second property, which states that for arc (t, s + 1) and for period τ such that
t ≤ τ ≤ s, the generalized first-order condition for (5.31) is necessary and sufficient
for optimality, i.e., Ct +Ht,τ ∈ ∂Rτ (Dτ ), where ∂Rτ (Dτ ) is the set of subgradients
of the function Rτ (Dτ ) at Dτ . However, this condition is equivalent to the condition
that if r(k+1)τ ≤ Ct + Ht,τ ≤ rkτ , then Ct + Ht,τ ∈ ∂Rτ (

∑k
j=1 djτ ), and an optimal

solution exists for the arc (t, s + 1) subproblem such that wjτ = 1 for j = 1, . . . , k

and wjτ = 0 for j = k + 1, . . . , nτ + 1.

5.5 Capacitated Versions

Our analysis in this chapter thus far has assumed that no limit exists on the size
of any production/procurement order. In contexts in which production/procurement
orders are limited by some capacity level (which includes virtually all practical con-
texts), the DSP becomes more difficult. Formulating the capacitated version of the
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problem requires simply replacing each big-M value (Mt ) in the DSP formulation
with the associated finite capacity level, denoted as bt , for t = 1, . . . , T . We de-
note the capacitated demand selection problem by CDSP, and note that, based on
the results in the prior section, an equivalent lot sizing with pricing problem with
piecewise-linear and concave revenue functions exists. We also observe that, unlike
the DSP, the CDSP is an N P-Hard optimization problem, as it contains the ca-
pacitated lot sizing problem as a special case. In this section we will briefly discuss
modeling issues and problem variants of the CDSP.

Recall that in the DSP formulation it did not matter whether the demand selec-
tion (wjt ) variables were required to take binary values. That is, even though we
formulated the problem such that these variables were free to take any values be-
tween zero and one, an optimal solution exists such that each of these variables will
be binary at optimality. When finite production capacities exist, however, this is not
the case, and whether or not we require these variables to take binary values has a
substantial impact on the difficulty of the problem. Moreover, contexts may exist
(particularly when capacities are limited) in which not all orders are completely ful-
filled, but some are partially fulfilled. We therefore classify capacitated versions of
the CDSP according to two important factors. The first of these factors is whether
or not partial order fulfillment is permissible. When partial order fulfillment is per-
missable, the demand selection (wjt ) variables are free to take any values between
zero and one. If partial order satisfaction is not permitted, then these variables must
be binary. The second factor corresponds to whether or not the finite production
capacity parameters vary with time. In the equal-capacity case, capacity equals b

in every time period, whereas in the general case we retain the subscript on bt to
indicate capacity values that are time-varying.

Although, as noted previously, the CDSP is N P-Hard, the special case with
continuous demand selection variables and time-invariant capacities can be solved in
polynomial time, based on the polynomial solvability of the equal-capacity lot sizing
problem (see [1, 5]). That is, as with the uncapacitated DSP, because the associated
problem is polynomially solvable for any given demand vector, and because the
demands (orders) in different periods are independent of one another, this special
case of the CDSP is polynomially solvable. We next briefly sketch the properties
that facilitate its solution in polynomial time.

As with the uncapacitated DSP, an optimal solution exists for the CDSP with
equal capacities consisting of a sequence of regeneration intervals. A regeneration
interval is a subsequence of time periods t through s with 1 ≤ t ≤ s ≤ T , such that
no inventory is held at the end of periods t −1 and s, but a positive level of inventory
is held at the end of periods t, t + 1, . . . , s − 1. For the DSP, each arc we defined in
the shortest path solution approach corresponded to a regeneration interval, and for
the uncapacitated problem, all production in the regeneration interval occurred in
the first period (t) of the regeneration interval (defined by the arc (t, s + 1)). In the
equal-capacity version of the lot sizing problem, production within a regeneration
interval may occur in any of the periods. However, an optimal solution exists such
that, within any regeneration interval, the production level equals either zero or the
capacity level b for all periods except at most one (see [1]).
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To illustrate why this implies polynomial solvability for the ELSP with constant
capacities, note that if we have a regeneration interval (t, s + 1), this implies that
It−1 = 0, Is = 0, and Iτ > 0 for τ = t, t + 1, . . . , s − 1. Because of this, produc-
tion in periods t through s must satisfy all demands in periods t through s. Letting
D(t, s) = ∑s

τ=t Dτ , then if the total production in periods t through s must equal
D(t, s), and if production must equal zero or b for all periods except at most one,
then we know that the amount produced in the period in which we do not produce
at zero or b must equal D(t, s) mod b, where x mod y = x − y	x/y
. As a result,
when solving the subproblem for arc (t, s + 1), we only need to consider solutions
that (a) produce either zero, b, or D(t, s) mod b in each period, and (b) ensure that
cumulative production is at least as great as cumulative demand. As a result, for
the equal-capacity ELSP, the arc subproblem can be solved in polynomial time, and
because the number of arcs is polynomial in T , the overall problem is polynomially
solvable.

For the equal-capacity CDSP, these same properties hold for any given demand
vector within a regeneration interval, although the number of potential demand vec-
tors is effectively infinite (thus, we do not know the value of D(t, s) a priori).
A more general characterization of the structural properties of an optimal regen-
eration interval solution does, however, exist (see [3]). In particular, it is possible to
show that an optimal regeneration interval exists that is one of the following types:

1. Production in each period in the regeneration interval equals either 0 or b, and at
most one demand is partially satisfied.

2. No demands are partially satisfied, and production may be strictly between 0 and
b in at most one period in the regeneration interval.

For any given regeneration interval (t, s + 1), we sort all demands in periods t

through s in nonincreasing order of ρ̂j t = ρjt/djt values. We can show that if
ρ̂j t ≥ ρ̂kt ′ for demands j and k in periods t and t ′ within the regeneration inter-
val, if an optimal solution exists with wjt < 1, then an optimal solution exists with
wkt ′ = 0; similarly, if wkt ′ > 0 then wjt = 1. That is, within any regeneration inter-
val we have a preference ordering of the attractiveness of demands. Then, after sort-
ing in this order, we can evaluate solutions of type 1 above by going down this list
and successively assuming that a particular demand is the one such that 0 < wjt < 1.
If a given demand is fractionally satisfied, then all lower indexed demands are fully
satisfied, while all higher indexed demands are not satisfied at all. The choice of
a particular demand to be satisfied fractionally therefore uniquely determines the
number of periods that must be satisfied at full capacity b (assuming djt < b for all
orders), and, as a result, the values of the corresponding wjt variables within the
regeneration interval.

For the second type of solution above, given the preference ordering within any
regeneration interval, we may consider a total of O(nmaxT ) solutions such that de-
mands 1 through l have wjt = 1, while the remaining demands have wjt = 0. Each
such solution implies a value of D(t, s), as well as the number of periods in which
production must be at full capacity. We thus have a polynomial number of solutions
of types 1 and 2 above that need to be evaluated for each regeneration interval. The
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time required to determine an optimal subproblem solution is the time required to
solve an equal-capacity lot sizing problem (which is O(T 3)) for at most O(nmaxT )

demand vectors. This implies that the time required to find an optimal regeneration
interval solution is O(nmaxT

4). Because there are O(T 2) regeneration intervals, the
overall time required to solve the equal-capacity CDSP is O(nmaxT

6).
Unfortunately, when we do not permit partial order satisfaction, the resulting

problem remains N P-Hard, even when all capacities are equal (see [3]). Methods
for strengthening the LP relaxation as well as heuristic solution approaches for this
case and problems with time-varying capacities are discussed in [4].
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Chapter 6
Dynamic Lot Sizing with Market Selection

Abstract This chapter considers a seemingly innocuous change in the assump-
tions underlying the Demand Selection Problem (DSP) considered in the previ-
ous chapter, which severely complicates the problem analysis. Instead of a se-
quence of independent demands over a time horizon, in this variant of the prob-
lem, demands in successive periods may be related in the sense that if we satisfy
a given demand in some period t , we must then satisfy a particular set of de-
mands in other periods. That is, instead of selecting individual demands, we are
now faced with the problem of selecting from a set of time-phased vectors of de-
mands. In practical terms, this corresponds to determining whether we will satisfy
all or none of a given customer’s or market’s demands over the time horizon. We
refer to the resulting problem as the Market Selection Problem (MSP) and discuss
the problem’s complexity and potential solution approaches throughout this chap-
ter.

6.1 Market Selection Problem Definition

The Market Selection Problem (MSP) considers a set J of n markets, where the
demand from market j in period t equals djt for all j ∈ J and t = 1, . . . , T . We can
formulate the MSP as a restriction of a special case of the DSP from the previous
chapter. That is, starting with the DSP formulation, we assume that nt = n for all t =
1, . . . , T , where n corresponds to the number of markets. We then impose a new set
of constraints that require wjt = wjt+1, for all j ∈ J and t = 1, . . . , T −1. That is, if
we choose to satisfy the demand for market j in any period, we must then satisfy that
market’s demand in every period. This is equivalent to eliminating the time subscript
on the wjt variables, and we therefore define wj as a binary variable equal to one if
we satisfy market j demand in all periods, and zero otherwise. We also define Rj as
the total revenue available from market j over the T -period horizon, where, using
the notation defined in the previous chapter, Rj = ∑T

t=1 rjt djt . We retain the basic
notation and cost assumptions of the DSP except where noted. We can formulate the
MSP as follows:
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[MSP] Maximize
n∑

j=1

Rjwj −
T∑

t=1

{Styt + CtQt + HtIt } (6.1)

Subject to It = Qt + It−1 −
n∑

j=1

djtwj , t = 1, . . . , T , (6.2)

Qt ≤ Mtyt , t = 1, . . . , T , (6.3)

I0 = 0, Qt , It ≥ 0, t = 1, . . . , T , (6.4)

wj ∈ {0,1}, j = 1, . . . , n, (6.5)

yt ∈ {0,1}, t = 1, . . . , T . (6.6)

Observe that we can set Mt = ∑T
τ=t

∑n
j=1 djτ in (6.3) without loss of optimality.

For any given selection of markets, the MSP becomes an ELSP, and is, therefore,
easily solved. Similarly, for a given production plan, the problem is easily solved as
well. To see this, consider a fixed production plan with v demands placed in periods
{1 = t1 < t2 < · · · < tv ≤ T }. Because an optimal solution exists satisfying the ZIO
property (see Sect. 1.2.3), we know that

Qtl =
τl+1−1∑

τ=tl

n∑

j=1

djτwj , l = 1, . . . , v, and (6.7)

It =
τl+1−1∑

τ=t+1

n∑

j=1

djτwj , tl ≤ t < tl + 1, l = 1, . . . , v. (6.8)

We can therefore write the net profit associated with a given production plan as

n∑

j=1

(

Rj −
v∑

l=1

{

Ctl

τl+1−1∑

τ=tl

djτ +
τl+1−2∑

τ=tl

Hτ

τl+1−1∑

u=τ+1

dju

})

wj −
r∑

l=1

Stl . (6.9)

We can maximize (6.9) over all binary vectors w by setting wj = 1 if and only if

Rj ≥
v∑

l=1

{

Ctl

τl+1−1∑

τ=tl

djτ +
τl+1−2∑

τ=tl

Hτ

τl+1−1∑

u=τ+1

dju

}

. (6.10)

Note that the right-hand side of (6.10) corresponds to the total variable cost incurred
when serving market j using the given production plan with v demands placed
in periods {1 = t1 < t2 < · · · < tv ≤ T }. Thus, this condition simply requires that
a market’s revenue is at least as great as the associated variable cost incurred in
serving the market using the given production plan.

Despite the fact that the problem is easily solved for a given binary vector w or
for a given binary vector y, the problem is unfortunately not easily solved when
both of these vectors are decision vectors, as we next discuss.
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6.1.1 MSP Problem Complexity

The decision version of the MSP was shown to be strongly N P-Complete in [7].
Although the complete proof of this result is quite involved, here we sketch the
proof structure and the main results involved in the proof. We begin by considering
a very simple special case of the MSP with an odd number of planning periods T ,
a fixed order cost of St = 2 in every period, zero variable production cost in every
period (all Ct = 0), and a holding cost of one in every period (Ht = 1). Consider
an instance of the ELSP with these cost parameters and with a demand of dt = 1
in every period. For this ELSP instance, if v = (T − 1)/2, then an optimal solution
contains v + 1 production orders, where v of the orders cover two periods and one
of the orders covers one period. The average cost per period of this solution (which
also equals the average cost per unit of demand), AC∗(T ), equals 3/2 + 1/(2T ),
which clearly exceeds 3/2.

We next construct a set of markets, such that in every period t = 1, . . . , T , exactly
one market has a demand of one unit, and all other markets have a demand of zero
units in the period. The revenue associated with market j is defined as

Rj = AC∗(T )

T∑

t=1

djt . (6.11)

Let Js ⊆ J denote a set of selected markets such that wj = 1 for j ∈ Js , and let
Π(Js) denote the profit associated with the set Js . Now note that Π(∅) = 0 and
Π(J ) = 0, i.e., selecting either zero markets or all markets produces a profit of
zero. Observe also that any selection of markets results in a time-phased demand
vector that is binary, and let D(Js) denote this vector when the subset Js of markets
is selected. We can thus view any such vector D(Js) as a sequence of zeros and
ones.

Suppose this vector D(Js) contains a subsequence with a zero, followed by an
odd number of ones, followed by a zero (for convenience we assume zero demand
in dummy periods 0 and T + 1). If this is the case, then if k is the total num-
ber of ones in the sequence, under our cost assumptions, the total cost equals at
least (3/2)k + (1/2). The profit associated with this sequence is no greater than
AC∗(T )k − ((3/2)k + (1/2)), which is strictly less than AC∗(T )T − ((3/2)T +
(1/2)) = 0. If, instead, all subsequences of consecutive ones correspond to an even
number of periods, then the optimal production plan always uses an order to satisfy
two consecutive periods worth of demand, which implies that the average cost per
unit produced equals (3/2). In this case, if there are k total ones in the vector D(Js),
the associated profit equals (AC∗(T ) − (3/2))k > 0. As a result, a solution with net
profit greater than zero exists if and only if the vector D(Js) contains only even
subsequences of consecutive ones. This implies that the MSP is at least as difficult
as the problem of determining whether a selection of markets exists for this special
case satisfying this even subsequence property. This even subsequence problem may
be posed as follows.
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Consider a set J of n binary vectors, each of dimension T , such that for at most
one of these vectors, element t equals one. Given a subset Js ⊆ J , let D(Js) de-
note a (T + 2)-dimensional vector such that elements 1 and T + 2 equal zero, and
elements 2 through T + 1 consist of the component-wise sum of the vectors in Js .
Note that D(Js) must also be a binary vector. We wish to determine whether a subset
Js exists such that every consecutive sequence of ones in D(Js) is of even length.
The remainder of the proof, detailed in [7], involves a reduction from the classical
3-Satisfiability problem (3SAT; see [1]) to this even subsequence problem. In par-
ticular, we consider the market selection recognition problem, which asks whether
a selection of markets exists with net profit greater than B for some constant B .
Given any instance of 3SAT, [1] creates an equivalent instance of the market se-
lection recognition problem in polynomial time. Thus, if we can answer yes to the
market selection recognition problem in polynomial time, this implies that we can
answer yes to the question of whether the instance of 3SAT is satisfiable in polyno-
mial time, which only holds if P = N P .

6.1.2 MSP Approximability

Because it is not possible to find an optimal solution for an N P-Hard problem
in polynomial time (unless P = N P), for such problems, researchers often seek
so-called approximation algorithms. An approximation algorithm provides a fea-
sible solution in polynomial time that adheres to a certain provable performance
guarantee. For instance, if Π∗ denotes the maximum profit of an instance of the
MSP, an approximation algorithm A is defined as a 1 − ε approximation algorithm
for a maximization problem if it is guaranteed to produce a solution with profit
ΠA such that ΠA ≥ (1 − ε)Π∗. Unfortunately, as shown in [7], a 1 − ε approxi-
mation algorithm cannot exist for MSP with 0 < ε < 1 unless P = N P . To see
this, suppose that such an algorithm does exist. Recall that in our discussion of the
N P-Completeness proof in the previous section, if no profitable market selection
exists (i.e., no selection satisfying the even subsequence property), then Π∗ = 0.
This also implies that the corresponding instance of 3SAT is not satisfiable. If such
an approximation algorithm exists, then it is guaranteed to find a solution such that
ΠA ≥ (1 − ε)Π∗ = 0, which implies ΠA = 0. If, on the other hand, Π∗ > 0, then
the corresponding instance of 3SAT is indeed satisfiable, and the approximation
algorithm finds a solution such that ΠA ≥ (1 − ε)Π∗ > 0, i.e., ΠA > 0. But this
implies that the approximation algorithm can verify, in polynomial time, whether
the instance of 3SAT is satisfiable, which would imply that 3SAT is polynomially
solvable (we thus have a contradiction, unless P = N P).

Suppose that we instead consider an alternate approach to formulating the MSP,
as discussed in [2] and [4]. In particular, suppose that we view Rj as the opportunity
cost for not satisfying market j demand, and let w̄j = 1 − wj . Thus, if w̄j = 1,
we forgo the revenue associated with market j demand and we need not satisfy
market j demand. We also reformulate the constraint set using a facility location



6.1 Market Selection Problem Definition 55

type of reformulation of the constraint set of the MSP. That is, we let xjtτ denote
the percentage of market j demand in period τ satisfied using production in period
t , and we define c

j
tτ = (Ct + ∑τ−1

s=t Hs)djt as the cost to satisfy market j demand
in period τ using production in period t . Then we can formulate the LP relaxation
of the MSP as follows:

[MSP-alt] Minimize
n∑

j=1

Rj w̄j +
T∑

t=1

{

Styt +
n∑

j=1

T∑

τ=t

c
j
tτ xjtτ

}

(6.12)

Subject to
τ∑

t=1

xjtτ + w̄j = 1, τ = 1, . . . , T , (6.13)

j ∈ J,

xjtτ ≤ yt , t = 1, . . . , T , (6.14)

τ = t, . . . , T ,

j ∈ J,

xjtτ , yt ≥ 0, t = 1, . . . , T , (6.15)

τ = t, . . . , T ,

j ∈ J.

The first term of the objective function (6.12) corresponds to the market rejection
costs, while the remaining terms in brackets are the associated lot sizing costs. Con-
sider an optimal solution (ŵ, x̂, ŷ) for the MSP-alt formulation. Now suppose that
for any market such that ŵj ≥ 1/2, we set w̄j = 1, and for all other markets, we set
w̄ = 0. Let J1/2 = {j : ŵj ≥ 1/2}; this implies that w̄j = 1 for j ∈ J1/2 and w̄j = 0
for j ∈ J\J1/2. We refer to the resulting w̄ as the rounded LP relaxation market
selection vector, and we denote this vector as w̄r .

The rejection cost associated with the rounded market selection vector w̄r

equals
∑

j∈J1/2
Rj . The rejection cost associated with the LP relaxation solu-

tion equals
∑

j∈J Rj ŵj , and we have 2 × ∑
j∈J1/2

Rjŵj ≥ ∑
j∈J1/2

Rj and 2 ×
∑

j∈J\J1/2
Rj ŵj ≥ 0, which implies that

∑
j∈J1/2

Rj ≤ 2 × ∑
j∈J Rj ŵj . That is,

the rejection cost of the rounded market selection vector is at most twice the rejec-
tion cost associated with the LP relaxation solution.

We next demonstrate that by solving the ELSP that results when fixing w̄ = w̄r ,
we arrive at a feasible solution for the MSP with total cost no greater than twice
the cost of the LP relaxation of MSP-alt. Because the LP relaxation of MSP-alt
provides a lower bound on the optimal solution of the MSP, this implies we can
obtain a feasible solution for the MSP with cost at most twice that of the optimal
solution.

Let ELSP(1/2) denote the instance of the ELSP that results when the vector w̄ is
fixed at w̄r . When we solve MSP-alt with w̄ = w̄r , we know that an optimal solution
exists for the resulting LP relaxation with lot sizing costs equal to the optimal so-
lution value of ELSP(1/2) (because no integrality gap exists for this formulation of
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the ELSP). Thus, if we can find a solution to the restricted version of MSP-alt when
w̄ = w̄r with lot sizing costs at most twice those associated with the LP relaxation
solution (ŵ, x̂, ŷ), then we know that ELSP(1/2) has an optimal solution value no
more than twice the lot sizing costs associated with (ŵ, x̂, ŷ). This implies that the
total rejection plus lot sizing costs of the feasible solution we have constructed are
no more than twice the LP relaxation solution.

For j ∈ J1/2, let xjtτ = 0 for all t = 1, . . . , T and τ = t, . . . , T . For j ∈ J\J1/2,

let x̃j tτ = x̂j tτ

1−ŵj
, and for every t = 1, . . . , T , let ỹt = max{minj∈J\J1/2{ ŷt

1−ŵj
},1}.

Note that this solution is feasible for MSP-alt and that for j ∈ J\J1/2, we have
x̃j tτ ≤ 2x̂j tτ for all t = 1, . . . , T and τ = t, . . . , T , and for t = 1, . . . , T , ỹt ≤ ŷt .
Letting x̄, ȳ denote an optimal solution for ELSP(1/2), we then have

T∑

t=1

{

St ȳt +
n∑

j=1

T∑

τ=t

c
j
tτ x̄j tτ

}

≤
T∑

t=1

{

St ỹt +
n∑

j=1

T∑

τ=t

c
j
tτ x̃j tτ

}

≤ 2 ×
T∑

t=1

{

St ŷt +
n∑

j=1

T∑

τ=t

c
j
tτ x̂j tτ

}

.

We have thus shown that we can construct a feasible solution (w̄r , x̄, ȳ) with re-
jection costs at most twice those of the LP relaxation solution, and lot sizing costs
at most twice those of the LP relaxation solution, which implies an approximation
algorithm for the MSP with a performance guarantee of no more than twice the opti-
mal solution (with respect to the objective function (6.12)). Note, however, that our
prior result for the MSP formulation still holds, i.e., a 1−ε approximation algorithm
cannot exist for MSP with 0 < ε < 1 unless P = N P .

To see this, for any selection of markets Js ⊆ J , let Γ (Js) equal the minimum
cost associated with this subset according to (6.12), and let Π(Js) equal the maxi-
mum net profit according to (6.1). We then always have Γ (Js)+Π(Js) = ∑n

j=1 Rj .
That is, if we substitute 1 − wj = w̄j for all j ∈ J in (6.12), we obtain the constant
term

∑n
j=1 Rj within the objective. Now observe that if J ∗

s is an optimal selec-

tion of markets and JA
s is a selection of markets found by a 1 + ε approximation

algorithm for MSP-alt, then Γ (JA
s )/Γ (J ∗

s ) ≤ 1 + ε, which is equivalent to

∑n
j=1 Rj − Π(JA

s )
∑n

j=1 Rj − Π(J ∗
s )

≤ 1 + ε, (6.16)

which is equivalent to

Π(JA
s )

Π(J ∗
s )

≥ 1 − ε

(∑n
j=1 Rj

Π(J ∗
s )

− 1

)

. (6.17)

Because
∑n

j=1 Rj can be arbitrarily large, a cost performance guarantee for MSP-
alt does not imply a corresponding performance guarantee for the MSP.
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We next note that our choice of 1/2 as the threshold for rounding was some-
what arbitrary and, based on previous approaches that demonstrate the success of
randomized algorithms (see [5, 6]), we can devise a similar randomized method.
Instead of using 1/2 as our rounding threshold, suppose we use β for some value
chosen randomly from the interval (0, δ]. Thus, if ŵj ≥ β , we reject market j , and
we select market j otherwise. Because market j will be rejected if ŵj ≥ β , the prob-
ability we reject market j is the probability that β is less than or equal to ŵj for β

selected uniformly from the interval (0, δ]. Therefore, if ŵj ≤ δ, the probability that
market j is rejected is no higher than ŵj /δ. If ŵj > δ, then we reject market j with
probability 1. Noting that when ŵj > δ, the fraction ŵj /δ > 1, this implies that
the probability of rejecting market j is always bound from above by ŵj /δ. We can
therefore bound the total rejection cost from above using the term

∑
j∈J Rj ŵj /δ.

Using a similar approach as we did for the case in which the rounding threshold
was 1/2, we can show that this rounding approach using a threshold of β produces
a solution with lot sizing costs that are at most 1/(1 − β) times the lot sizing costs
from the LP relaxation. To get the expected lot sizing costs from a randomly cho-
sen value of β from the interval (0, δ], we take the integral (1/δ)

∫ δ

0 [1/(1 − β)]dβ ,
which equals ln(1/(1 − δ))/δ. As a result, the expected lot sizing costs we obtain
when solving ELSP(β) are no higher than ln(1/(1 − δ))/δ times the lot sizing costs
from the LP relaxation. We are thus able to create a solution with rejection costs at
most 1/δ times the rejection costs of the LP relaxation, and with expected lot sizing
costs of at most ln(1/(1 − δ))/δ times the lot sizing costs from the LP relaxation.
Observe that when δ = 1 − e−1 we have 1/δ = ln(1/(1 − δ))/δ < 1.582.

We can next derandomize the algorithm using the following approach. Because
the randomly chosen value of β results in some precise set of selected markets,
this implies there are n intervals of β values such that any value chosen from an
interval results in the same solution in terms of the markets selected and rejected.
These intervals are completely specified by the ŵj values. Thus, we can select any
value from each one of these intervals and apply the rounding algorithm associated
with each of these values. The minimum cost solution among these will have cost
no greater than the expected cost, which implies that we have an approximation
algorithm with a performance guarantee of 1.582.

6.1.3 Polynomially Solvable Special Cases

Despite the negative complexity results we have discussed, a number of special
cases of the MSP turn out to be solvable in polynomial time, several of which are not
unlikely to arise in practice. This section briefly summarizes a class of polynomially
solvable special cases of the MSP.

When contrasting the MSP with the DSP, it is apparent that the difference in
complexity lies in the interdependence of each market’s demands across time peri-
ods, because satisfying a market’s demand in one period implies the need to satisfy
its demand in all periods. This eliminates the possibility of applying a dynamic pro-
gramming (shortest path) approach that decomposes the problem into a sequence of
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smaller problems with shorter time horizons. As a result, even for cases with special
structure, we must identify alternative solution approaches.

We first consider the simple case in which market demands are time-invariant.
That is, for each market j , we assume djt = dj for t = 1, . . . , T . In this case, we can
show that a similar sorting algorithm to the one used for the EOQMC in Sect. 3.1.1
can be used to solve the problem. This result is stated in the following lemma. Before
presenting the lemma, we define Dj = T dj as the total market j demand over the
planning horizon.

Lemma 6.1 If market demands are time-invariant and markets are indexed in non-
increasing order of unit revenue, Rj/Dj , values, then if an optimal solution exists
that selects market k, an optimal solution exists that selects market k − 1.

Proof Suppose we have an optimal solution in which market k is selected and
market k − 1 is not. Let J ′ denote the set of selected markets in this solution,
and let R equal the total revenue obtained in this solution except for market k,
i.e., R = ∑

j∈J\{k} Rj . Define Γ ∗(J ′\{k}) as the minimum total lot sizing costs
associated with the solution we have defined, less the total variable production
and holding costs associated with market k, which we denote as pk and hk , re-
spectively. The net profit associated with the solution we have defined equals
R + Rk − Γ ∗(J ′\{k}) − pk − hk . Because market k is selected in an optimal
solution, we must have R + Rk − Γ ∗(J ′\{k}) − pk − hk ≥ R − Γ ∗(J ′\{k}), or
Rk ≥ pk + hk . Next consider adding market k − 1 to the optimal solution we have
defined, and let pk−1 and hk−1 equal the production and holding costs associated
with market k − 1 when using the same set of order periods as our optimal so-
lution. Because production and holding costs are linear and market demands are
time-invariant, we must have pk+hk

Dk
= pk−1+hk−1

Dk−1
. But our initial sort order implies

that Rk−1
Dk−1

≥ Rk

Dk
≥ pk+hk

Dk
= pk−1+hk−1

Dk−1
, which implies Rk−1 ≥ pk−1 + hk−1. As a re-

sult, if we add market k −1 to the set of selected markets, then the resulting solution
is at least as good as our initial solution, i.e., either we have a contradiction or an
alternative optimal solution. �

Lemma 6.1 implies that we can first sort markets in nonincreasing order of
Rj/Dj , then solve a sequence of n lot sizing problems, where problem k selects
markets 1, . . . , k, in order to find an optimal solution for the problem with time-
invariant market demands.

Corollary 6.1 When market j demand in period t equals a base market demand
level dj multiplied by a seasonal factor σt , i.e., djt = σtdj , then Lemma 6.1 remains
valid, with Dj = ∑T

t=1 σtdj .

Note that because these cases use a ratio that divides Rj by T dj in the first
case, and by dj (

∑T
t=1 σt ) in the seasonal case, both of these cases are equivalent

to sorting in nonincreasing order of Rj/dj . Because we need to first sort n markets
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and then solve n instances of the ELSP, the complexity associated with this problem
is O(n(logn + T logT )).

In [7], a number of additional polynomially solvable special cases are discussed,
which we briefly describe in the following list.

1. Market-specific pricing, with market j demand in period t taking the form djt =
αt − βtpj , where αt and βt are constants and pj is the market j price.

2. Infinite holding costs, in which case the problem becomes equivalent to a class
of shared fixed cost and selection problems discussed in [3].

3. Instances in which each market has positive demands spanning at most k con-
secutive periods (the DSP is the special case in which k = 1).

4. Instances containing a staircase demand matrix, where each period has demand
from at most one market, and each market’s positive demands span a continuous
set of periods.

It is interesting to observe that for the MSP with time-invariant (and seasonal)
demands, the sorting rule is based strictly on the markets’ unit revenues, which is
precisely the sorting rule used for the EOQMC in Chap. 3.

6.1.4 Heuristic Solution Methods

Clearly the LP rounding approach discussed in Sect. 6.1.2 provides a heuristic so-
lution approach with a worst-case performance ratio of 1.582. An additional simple
heuristic approach is described in [7], which we next summarize. This heuristic ap-
plies an iterative approach that takes advantage of the fact that for either a given
set of markets or for a given set of production periods, the remaining problem is
easily and quickly solved. To define this heuristic approach, let y∗(w) denote an
optimal value of the vector y for a given market selection vector w. Similarly, let
w∗(y) denote an optimal market selection vector w for a given vector y. Starting
with a specific order plan defined by a vector y0, we use condition (6.10) to deter-
mine an optimal selection of markets w0 = w∗(y0). Next, given w = w0, we solve
an instance of the ELSP to obtain y1 = y∗(w0). More generally, given a vector yi

at iteration i, we determine wi = w∗(yi) and then obtain yi+1 = y∗(wi), contin-
uing until either yi+1 = yi or wi+1 = wi . The net profit is guaranteed to improve
at each iteration (except the last) and the algorithm is finite because the number of
possible order plans is finite. While this iterative solution approach is quite simple
and fast, the quality of the final (locally optimal) solution obtained is very sensitive
to the initial solution y0. It is thus important to run the algorithm using numerous
initial solutions as a starting point, as described in [7]. As shown in [7], this iterative
algorithm is extremely effective in terms of average performance based on a large
number of computational test instances.
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Part III
Supply Chain Network Planning

with Demand Flexibility



Chapter 7
Assignment and Location Problems in Supply
Chains

Abstract This chapter delves into problems that require assigning customer de-
mands to supply sources. When no fixed cost exists for using a supply source and
supply sources are capacitated, we have a generalized assignment problem (GAP).
When fixed costs are incurred for using a supply source, then the problem is a classi-
cal facility location problem (FLP). We consider both capacitated and uncapacitated
facility location problems, as well as the implications of requiring single sourcing
constraints that do not allow splitting a demand between supply sources. Within
these problem classes, we analyze two different forms of demand flexibility. The
first type of flexibility corresponds to what we saw in the last two chapters, i.e., each
demand must be either fully accepted or rejected. The second type of flexibility re-
quires satisfying each demand, but the quantity (e.g., size, number of units) at which
a demand is satisfied must fall between prespecified lower and upper limits, while
revenue is proportional to the level at which the demand is satisfied. This chapter
defines several such assignment and location models containing these dimensions
of demand flexibility.

7.1 Demand Selection Problems

The models we present in this section follow naturally from the work discussed in
Chaps. 5 and 6, based on the classical GAP and FLP models defined in Sects. 1.2.5
and 1.2.6, respectively.

7.1.1 The GAP with Demand Selection

Recall that our standard definition of the GAP in Sect. 1.2.5 sought to minimize the
cost associated with the assignment of a set of demands J to a set of resources I ,
where the cost of assigning demand j ∈ J to resource i ∈ I equals cij . In the demand
selection version of the GAP, instead of minimizing cost, we maximize profit, where
πij denotes the profit associated with assigning demand j to resource i. Instead of
requiring the assignment of each demand to a resource, as in constraint set (1.21) of
the GAP formulation, we allow assigning each demand j to at most one resource i

J. Geunes, Demand Flexibility in Supply Chain Planning,
SpringerBriefs in Optimization,
DOI 10.1007/978-1-4419-9347-2_7, © Joseph Geunes 2012
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(in this sense, this demand selection version of the GAP departs from the standard
definition of a pure assignment problem), which results in the following formulation
of the GAP with demand selection:

[GAPDS] Maximize
m∑

i=1

n∑

j=1

πij xij (7.1)

Subject to
n∑

j=1

Dijxij ≤ bi, i = 1, . . . ,m, (7.2)

m∑

i=1

xij ≤ 1, j = 1, . . . , n, (7.3)

xij ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . , n. (7.4)

The GAPDS is a slight generalization of the standard multiple knapsack problem
(see [2]), where the above formulation permits both the revenue πij and capacity
consumption Dij values to depend on the resource to which a demand is assigned
(while the standard multiple knapsack problem would use parameters πj and Dj ,
independent of the resource). This implies that the GAPDS is an N P-Hard opti-
mization problem, although numerous effective solution methods have been devel-
oped for the multiple knapsack problem.

7.1.2 The FLP with Demand Selection

This section describes a generalization of the FLP that is similar to the way in which
the GAP was generalized in the previous section. That is, we let πij denote the net
revenue if demand j is assigned to facility i, and we no longer require satisfying
every demand, as was required in the standard definition of the FLP in Sect. 1.2.6:

[FLPDS] Maximize
m∑

i=1

n∑

j=1

πij xij −
m∑

i=1

Siyi (7.5)

Subject to
n∑

j=1

Djxij ≤ biyi, i = 1, . . . ,m, (7.6)

m∑

i=1

xij ≤ 1, j = 1, . . . , n, (7.7)

xij ∈ Ω, (7.8)

yi ∈ {0,1}, i = 1, . . . ,m. (7.9)
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Recall that Ω is either {0,1}m×n (when single sourcing is required) or [0,1]m×n,
when splitting any demand across multiple sources is permitted (also recall that this
distinction is unimportant when resources are uncapacitated, as an optimal single-
sourcing solution exists when the vector x is continuous). The FLPDS is N P-
Hard, even when resources are uncapacitated, as shown in [3]. The FLPDS also
generalizes the DSP in the same way that the FLP generalizes the ELSP. A heuristic
dual ascent algorithm for the uncapacitated version of the FLPDS is provided in [4].

7.2 Problems with Demand Specification Flexibility

In this section we define models that permit an even more general level of demand
flexibility than exists in the models we have defined so far throughout this book. We
indirectly alluded to this different type of flexibility in Sect. 5.5, when we permitted
partial demand satisfaction, but until now we have not dealt with it directly. We
note that the FLPDS when Ω = [0,1]m×n also allows partial demand satisfaction
(although in the uncapacitated version of this problem it is possible to show that an
optimal solution exists in which such partial demand satisfaction does not occur),
and is thus a special case of the kind of demand flexibility that we next define, which
we refer to as demand specification flexibility.

Under demand specification flexibility, for a given demand indexed by j , we
must satisfy demand at a level between some prespecified lower and upper bounds,
lj and uj , if we must meet the demand. In describing the majority of models we
have dealt with so far, we have used a single parameter (or vector) Dj to define the
quantity of demand that must be met in order to satisfy demand j . The parameter
(or vector) Dj specifies the demand level associated with demand j , while demand
specification flexibility allows the demand level associated with demand j to vary
between some lower and upper limits. In the selection models we have discussed so
far, the quantity of demand j that is satisfied must equal either 0 or Dj . Thus, if wj

denotes a variable that must equal one if we select demand j and zero otherwise,
then Djwj corresponds to the quantity of demand j that is satisfied.

Under demand specification flexibility, on the other hand, we define a new vari-
able vj associated with demand j , which specifies the level at which demand j

will be satisfied. Given the lower and upper bounds lj and uj , we will require
lj ≤ vj ≤ uj , assuming that demand j must be satisfied. If we do not require satis-
fying demand j , then we can utilize the binary variable wj along with the adjusted
constraint ljwj ≤ vj ≤ ujwj to allow for not satisfying demand j at all. The case
in which lj = uj = Dj corresponds to the majority of the selection-type models we
have dealt with thus far, where we can then write vj = Djwj . For the limited num-
ber of models we have discussed that permit partial demand satisfaction, we have
lj = 0, uj = Dj , and vj = Djwj , where the variable wj is now allowed to take any
value on the interval [0,1].

Demand specification flexibility arises in a number of practical settings, espe-
cially when interpreted as partial demand satisfaction, which imposes a lower bound
of zero on vj . Cases with non-zero lower bounds also arise in practice, particularly
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in continuous manufacturing processes of raw materials (e.g., metal or plastic strips,
plates, and tubes, or wood products used in further construction, manufacturing, dis-
tribution, and finishing operations). In such settings, because of the inherent value of
the material or product in question, customers often pay a price that is proportional
to the quantity (e.g., weight, length, surface area) delivered, or a price per unit that
is increasing at a decreasing rate (i.e., a concave function) in the quantity delivered.
As a result, in addition to defining the variable vj , we also define a revenue func-
tion Rj (vj ) that characterizes the total revenue obtained by the supplier (from the
customer) when demand j is delivered at the level vj .

7.2.1 The GAP with Demand Specification Flexibility

Our definition of the GAP with flexible demands (GAPFD) allows lower and up-
per bounds on each demand level j , which are resource dependent, i.e., if demand
j is allocated to resource i, then the delivered quantity for demand j , vij , must
fall between lower and upper bounds lij and uij . Let xij equal one if demand j is
allocated to resource i, and zero otherwise. We assume a revenue function of the
form Rij (vij ) = πij xij + rij vij (note that our constraints will require that vij > 0
implies xij = 1, and the revenue function can therefore be expressed as a function
of vij alone). Using this function, the parameter πij corresponds to the fixed profit
obtained if resource i is used to satisfy demand j , while rij is the corresponding
revenue per unit of demand. We also assume that a fixed amount of capacity aij

is consumed when assigning demand j to resource i (due to, e.g., resource setup
time), in addition to the amount of capacity consumed due to the quantity delivered,
vij . We formulate the GAPFD as follows:

[GAPFD] Maximize
m∑

i=1

n∑

j=1

{πij xij + rij vij } (7.10)

Subject to
n∑

j=1

{aij xij + vij } ≤ bi, i = 1, . . . ,m, (7.11)

m∑

i=1

xij = 1, j = 1, . . . , n, (7.12)

lij xij ≤ vij ≤ uij xij , i = 1, . . . ,m, j = 1, . . . , n,

(7.13)

xij ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . , n.

(7.14)

The problem when the assignment constraints (7.12) are cast as less-than-or-equal-
to inequalities (as in the GAPDS) serves as a relaxation of the GAPFD, although we
focus on the problem as formulated above, with equality constraints.
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We will next briefly describe an effective heuristic solution approach for the
GAPFD detailed in [6]. To motivate this heuristic, note that the following linear
program is equivalent to the LP relaxation of the GAPFD (see [6]):

[LP′] Maximize
m∑

i=1

n∑

j=1

{
(πij + rij uij )sij + (πij + rij lij )tij

}
(7.15)

Subject to
n∑

j=1

{
(aij + uij )sij + (aij + lij )tij

} ≤ bi, i = 1, . . . ,m,

(7.16)

m∑

i=1

sij + tij = 1, j = 1, . . . , n,

(7.17)

sij , tij ≥ 0, i = 1, . . . ,m,

(7.18)
j = 1, . . . , n.

Let λi , i ∈ I , and μj , j ∈ J denote dual variables associated with constraints (7.16)
and (7.17). Then the dual of LP′, which we denote as D′, is formulated as follows:

[D′] Minimize
m∑

i=1

λibi +
n∑

j=1

μj (7.19)

Subject to μj ≥ πij − λiaij + (rij − λi)lij , i = 1, . . . ,m, j = 1, . . . , n,

(7.20)

μj ≥ πij − λiaij + (rij − λi)uij , i = 1, . . . ,m, j = 1, . . . , n,

(7.21)

λi ≥ 0, i = 1, . . . ,m, (7.22)

μj unrestricted, j = 1, . . . , n. (7.23)

Note that constraints (7.20), (7.21), and (7.20) imply

μj = πij − aijλi + max
{
(rij − λi)lij ; (rij − λi)uij

}
,

i = 1, . . . ,m, j = 1, . . . , n, (7.24)

where the inner max equals (rij − λi)uij when λi ≤ rij and equals (rij − λi)lij
otherwise. If we define

fλ(i, j) = πij − aij λi +
{

(rij − λi)uij , λi ≤ rij ,

(rij − λi)lij , λi > rij ,
(7.25)
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then we can write μj = maxi=1,...,m fλ(i, j) for j = 1, . . . , n. The dual problem
may therefore be written as

min
λ≥0

n∑

j=1

max
i=1,...,m

fλ(i, j) +
m∑

i=1

λibi . (7.26)

We can view Eq. (7.25), and thus fλ(i, j), as the pseudo-profit associated with the
assignment of demand j to resource i for a given value of the dual multiplier λi . The
term πij − aij is a fixed net pseudo-profit term, while the last term in (7.25) may be
interpreted as the additional net profit per unit of capacity consumption, multiplied
by the amount of capacity consumption. Thus, if λi ≤ rij , then the assignment of
demand j to resource i is profitable, and if we make this assignment, we should do
so at the upper bound, uij , if possible. Similarly, if λi > rij , then assigning demand
j to resource i provides a negative contribution to profit per unit of capacity con-
sumption, and if we make this assignment, we should do so at a value no greater
than the lower bound lij .

The heuristic solution method provided in [6] uses the pseudo-profit functions
as the basis for a greedy heuristic solution approach (unless specifically noted, we
assume that the value of the vector λ used in the heuristic is determined by an
optimal dual solution to D′). To describe this heuristic, we first define ij as the
most profitable resource for demand j , i.e., ij = arg maxi∈I fλ(i, j). The greedy
approach considers not only the most profitable resource for each demand j , but
also the difference between this value and the second most profitable resource for
the demand. That is, we define

f̂j = fλ(ij , j) − max
i′∈I\{ij }

fλ

(
i′, j

)
, (7.27)

in order to capture the desirability of assigning demand j to resource ij . This mea-
sure is used for capacitated problems to get an idea of how critical it is to assign a
demand to its most profitable resource. If f̂j is small, then there is not much loss in
assigning demand j to its second most profitable resource, and if f̂j is large, then
a significant penalty exists if we cannot make this assignment. In the greedy phase
of the heuristic, the algorithm considers demands in decreasing order of f̂j values
and makes the assignments that are feasible to the most attractive resource for each
demand. If an assignment of demand j to resource i is feasible at a value at least
equal to the lower bound lij and rij > λi , then the assignment is made at the largest
value of vij possible (the minimum between the remaining available capacity of
resource i and uij ); if rij ≤ λi , then the assignment is made at vij = lij , if possi-
ble. If the greedy phase of the algorithm terminates with unassigned demands, then
an improvement phase is implemented in an attempt to find a feasible solution that
assigns all demands to resources.

Some important structural properties of the optimal solution of LP′ and the
heuristic approach we have outlined are provided in [6], which permit deriving
key performance characteristics and guarantees for this heuristic approach. We next
summarize these key properties and the results they imply. The first key result states
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that if the solution to LP′ is unique and we use the corresponding dual solution vec-
tor λ∗ in the heuristic approach, then for all demands in the solution to LP′ that are
not split between two or more resources, the greedy phase of the heuristic assigns
these demands to the exact same resources as the solution to LP′. Moreover, for
such demands that are fulfilled at their upper or lower limits in LP′, the heuristic
assigns these demands at the same level of resource consumption as in the solution
to LP′. The next key property shows that the total number of demands that are ei-
ther split between multiple resources or are fulfilled at a level strictly between their
upper and lower limits in the solution to LP′ is bounded from above by m, the num-
ber of resources. These results permit obtaining asymptotic performance results for
the heuristic for problems such that the number of resources is held fixed and the
number of demands and resource capacities increase to infinity (where resource ca-
pacities increase linearly in the number of demands in a way that ensures feasibility
with probability one). In particular, under mild assumptions on the probability dis-
tributions that characterize the problem parameters, and under specific assumptions
on the growth of resource capacities as the number of demands increases, [6] shows
that the heuristic approach we have outlined is asymptotically feasible and optimal.

7.2.2 The FLP with Demand Specification Flexibility

The facility location problem with demand specification flexibility, FLPFD, gener-
alizes the GAPFD in the same way the FLP generalizes the GAP, by including fixed
costs for the use of resources. Thus, letting yi denote a binary variable equal to one
if resource i satisfies any demand, and zero otherwise, we formulate the FLPFD as
follows:

[FLPFD] Maximize
m∑

i=1

n∑

j=1

{πij xij + rij vij } −
m∑

i=1

Siyi (7.28)

Subject to
n∑

j=1

{aij xij + vij } ≤ biyi, i = 1, . . . ,m, (7.29)

m∑

i=1

xij = 1, j = 1, . . . , n, (7.30)

lij xij ≤ vij ≤ uij xij , i = 1, . . . ,m, (7.31)

j = 1, . . . , n,

x ∈ Ω, (7.32)

yi ∈ {0,1}, i = 1, . . . ,m. (7.33)

Recall that when Ω = {0,1}m×n, we have the single-sourcing version of the prob-
lem, and when Ω = [0,1]m×n, this requirement is relaxed and demands may be



70 7 Assignment and Location Problems in Supply Chains

split among facilities. The FLPFD problem is formulated using a more general rev-
enue function rij (vij ) in [5] instead of the linear revenue function rij vij we use
above. In [5], an exact branch-and-price solution method is provided for the FLPFD,
while a very-large-scale-neighborhood (VLSN) based heuristic solution method is
described in [7]. Noting that for any fixed choice of facilities the FLPFD becomes
a GAPFD, this VLSN heuristic framework uses the heuristic described in the previ-
ous section as a subroutine for a given set of open facilities. The heuristic assesses
the value of various facility open, close, and swap moves. An open move chooses to
open a previously closed facility, while a close move closes an existing open facility
and a swap move takes the demands assigned to an open facility and reassigns them
to a currently closed facility.

A special case of the FLPFD formulated above was defined for a problem arising
in the steel manufacturing industry in [1]. For this special case πij = 0 and aij = 0
for all i ∈ I and j ∈ J , and rij = rj for every i ∈ I and for all j ∈ J , i.e., the revenue
associated with a demand is independent of the resource to which it is assigned. In
addition, the upper and lower bounds on the fulfillment quantity for each demand
do not depend on the resource assignment, i.e., lij = lj and uij = uj for every i ∈ I

and for all j ∈ J . Strong valid inequalities are provided in [1] for tightening the
LP relaxation upper bound for this special case, and a set of bin-packing-based and
LP rounding heuristics are provided for obtaining fast solutions. In addition, a La-
grangian relaxation method is developed for providing good upper bounds on the
problem’s solution. This Lagrangian relaxation approach results in an interesting
class of subproblems that also arise in the application of an exact branch-and-price
approach to both the GAPFD and the FLPFD. This exact branch-and-price approach
is presented in [5] and is discussed in the following chapter on decomposition ap-
proaches for location and assignment problems.
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Chapter 8
Branch-and-Price Decomposition
for Assignment and Location Problems

Abstract This chapter addresses a number of models with an assignment-based
structure that require allocating a set of demands to a set of resources. While we
have already considered several types of assignment problem in previous chapters,
each of these previous models assumed that a specific assignment cost could be
specified a priori, which depends only on the particular demand and the resource to
which it is assigned. In contrast, for the models considered in this chapter, the costs
associated with a resource will sometimes depend on the collective set of demands
assigned to the resource. The primary approach applied for solving these problems
will be a branch-and-price decomposition method. Of particular interest in applying
this approach are the so-called pricing problems that arise in the decomposition. As
we will see, these pricing problems will be consistent with several of the models
defined and analyzed in previous chapters.

8.1 Branch-and-Price Approach

This section provides a framework for applying the branch-and-price method for
the decomposition of problems containing an assignment structure. This method
uses a decomposition approach for solving a problem’s LP relaxation at each node
in a branch-and-bound tree. Branch-and-price has been a very effective approach
for solving large-scale problems with a GAP structure, particularly when the ratio
of the number of demands to the number of resources is small (see [5]). Moreover,
when the net profit or cost associated with a resource is a nonlinear function of
the collective set of demands assigned to the resource, branch-and-price becomes
an attractive alternative for solving mixed integer nonlinear optimization problems
with an embedded assignment problem.

The branch-and-price method typically begins with a set partitioning formulation
of the problem of interest. In particular, we wish to partition the set J of demands
into m disjoint subsets Ji , i = 1, . . . ,m such that Ji ∩ Jk = ∅ for all i, k ∈ J and⋃m

i=1 Ji = J , where Ji denotes the set of demands assigned to resource i. Let Ki

denote the set of all possible subsets of customers that can be feasibly assigned to
resource i (note that |Ki | is exponential in n). Subset Ki is characterized by an
n-dimensional binary vector xk

i whose j th element equals one if customer j is in-
cluded in the subset, and zero otherwise. We define λk

i as a binary variable equal
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to one if subset k ∈ Ki is selected for resource i, i = 1, . . . ,m, and zero otherwise.
Defining αi(x

k
i ) as the maximum net profit associated with resource i when the sub-

set k ∈ Ki is assigned to resource i, we formulate the set partitioning (SP) problem
as follows:

[SP] Maximize
m∑

i=1

Ki∑

k=1

αi

(
xk
i

)
λk

i (8.1)

Subject to
m∑

i=1

Ki∑

k=1

xk
ij λ

k
i = 1, j = 1, . . . , n, (8.2)

Ki∑

k=1

λk
i = 1, i = 1, . . . ,m, (8.3)

λk
i ∈ {0,1}, i = 1, . . . ,m, k = 1, . . . ,Ki. (8.4)

The objective function (8.1) maximizes the net profit from the assignment of de-
mands to resources. The first constraint set (8.2) ensures that each demand is as-
signed to exactly one resource, while the second constraint set (8.3) requires choos-
ing exactly one subset for each resource. Observe that if we permit assigning no
demands to a resource (with resulting net profit of zero), then the above formulation
SP allows selecting at most m subsets of demands. This is equivalent to replacing
the equality in (8.3) with a less-than-or-equal-to (≤) sign, which then implies that
the associated dual multipliers for these constraints (when solving the LP relaxation
of SP) must be nonnegative.

We have made the implicit assumption that we can enumerate all Ki subsets for
every i ∈ I and that we can evaluate the associated value of αi(x

k
i ), although this is

not typically possible for practical problem instances. Therefore, we typically im-
plement the solution of SP by solving its LP relaxation using column generation,
where each subset Ki corresponds to a column. To do this, we first consider the LP
relaxation of SP, and suppose that we have some subset of columns that ensures that
a feasible solution exists. The solution of this restricted LP relaxation (containing
only a subset of the columns) provides a lower bound on the optimal LP relaxation
solution value. To determine whether or not the current solution is optimal for the
LP relaxation, we need to determine whether or not a column exists with an at-
tractive reduced cost that is not currently included in the restricted LP relaxation
formulation. Doing this requires solving the so-called pricing problem.

Given an LP relaxation solution for the restricted problem, let δj , j = 1, . . . , n,
and γi , i = 1, . . . ,m denote the corresponding dual variable values associated with
constraints (8.2) and (8.3), respectively (recall that we replace the equality in (8.3)
with a ≤ sign, which implies the nonnegativity of the γi variables). Then the reduced
cost associated with a subset (column) Ki can be written as

αi

(
xk
i

) +
∑

j∈J

xk
ij δj − γi. (8.5)
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Note that the sign in front of the second term above may be positive or negative,
since the δj variables are unrestricted in sign. If (8.5) is non-positive for all k ∈ Ki

and for all i ∈ I , then no additional attractive columns exist, and the current LP
relaxation solution is optimal. On the other hand, if we find some subset k ∈ Ki

for some i ∈ I such that (8.5) is positive, then we have identified a new attractive
column that must be added to the current (incomplete) formulation, and the LP
relaxation must then be re-solved with this new column, and the process repeated.
This iterative process repeats a finite number of times until the LP relaxation is
solved.

To determine whether an attractive column exists for a resource i ∈ I , we now
treat the xk

i vector as a vector of decision variables, and maximize (8.5) over all
feasible assignments of customers to the resource. In doing so, we suppress the
dependence of these variables on the subset (k), and solve the following pricing
problem for each resource i ∈ I :

[PP(i)] Maximize αi(xi) +
∑

j∈J

δj xij (8.6)

Subject to x ∈ Xi . (8.7)

The set Xi contains all feasible demand assignments to resource i, for each i ∈ I ,
while the function αi(xi) determines the maximum net profit generated from this as-
signment. The difficulty of the pricing problem therefore depends on the form of the
αi(xi) functions and the structure of the sets Xi , and these are both highly problem
dependent. The remaining sections of this chapter consider specific problem classes
and the functional forms and set definitions that result for these classes.

Observe that if an optimal solution exists for PP(i) with objective function value
greater than γi , then according to (8.5), the solution of PP(i) identifies a new at-
tractive column for the LP relaxation, and we must re-solve the LP relaxation with
this column included (in fact, we have identified a column with the highest reduced
cost). If no such column exists among all resources i ∈ I , then the current LP relax-
ation solution is optimal. Note that identifying an attractive column only requires
finding a solution to PP(i) with objective function value greater than γi . Once such
a solution is identified, we may add the column to the LP relaxation of SP, i.e., we
need not always solve PP(i) to optimality in order to identify a new column with
an attractive reduced cost value. However, ultimately finding an optimal solution to
the LP relaxation of SP requires solving PP(i) to optimality for all i ∈ I , in order
to ensure that no additional attractive columns exist, i.e., that no non-basic variable
with a positive reduced cost exists.

This decomposition method for solving the LP relaxation therefore constitutes
the “price” part of the branch-and-price method. The “branch” part of the branch-
and-price method results from implementing a branch-and-bound tree based on the
LP relaxation solution. That is, the decomposition approach we have discussed so far
leads to the solution of the LP relaxation at the so-called root node, as we have not
explicitly required any of the λk

i variable to be strictly zero or one. The LP relaxation
solution that results may indeed contain fractional λk

i variable values. When this is
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the case, we must branch on some variable in order to force the variable to take a
binary value. Unfortunately, if we were to branch on a fractional λk

i variable, this
would create the need to solve an LP relaxation that is structurally different from
the relaxation with which we started. In other words, if we were to add a constraint
of the form λk

i ≤ 0 or λk
i ≥ 1 to the LP relaxation of SP, then this would change

the form of each of our pricing problems PP(i). As an alternative, we may omit
the column corresponding to the kth subset for resource i from the formulation,
which is equivalent to forcing λk

i = 0. Similarly, when considering the branch in
which λk

i ≥ 1, we include the kth column for resource i in the formulation, but no
other columns corresponding to subsets where demand j is assigned to a resource,
which forces λk

i to one. We can enforce these conditions in the definition of the
starting set of feasible columns for the LP relaxation at a node, as well as through
the definition of each set Xi when solving the pricing problems associated with
this LP relaxation. For more details on specific implementations of the branch-and-
bound scheme, please see, e.g., [3] or [5]. The remainder of this chapter discusses
the form of the pricing problem that results within specific supply chain planning
problems containing an underlying GAP and/or FLP structure.

8.2 Branch-and-Price for Supply Chain Planning Problems

The remainder of this chapter discusses four specific single-item supply chain plan-
ning problems that may be cast in the form of SP. The first three of these problems
require assigning customer demands to a network of supply resources with single-
sourcing constraints, i.e., each customer’s demand must be assigned fully to one
facility. As we will see, these problems produce pricing subproblems that are equiv-
alent to particular demand selection problems already considered in earlier chap-
ters. The fourth such problem, discussed in Sect. 8.2.4, corresponds to the classes of
GAPFD and FLPFD problems defined in the previous chapter. The resulting pricing
subproblems for this problem class lead to an interesting class of knapsack problems
with flexible demands.

8.2.1 The Continuous-Time Single-Sourcing Problem

We first consider a set J of demands such that demand j has a constant and deter-
ministic demand rate Dj that occurs continuously in time. Each of these demands
must be assigned to some facility i ∈ I , which must satisfy all assigned demands as
they occur. Resource i must manage stock in order to satisfy all assigned demands,
and each resource faces costs consistent with those of the EOQ model discussed in
Chap. 1. In particular, resource i incurs a holding cost of Hi per unit per unit time,
and incurs a fixed order cost of Si each time it replenishes its inventory. In addition,
Cij corresponds to the cost associated with satisfying customer j demand using
resource i (this cost term may account for variable production and transportation
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costs). If xij equals one when demand j is assigned to resource i, then resource i

faces an EOQ problem with demand rate
∑

j∈J Djxij . The goal of this continuous-
time single-sourcing problem is then to determine the assignment of demands to
resources that minimizes cost across a network of resources, each of which fulfills
its assigned demands.

This problem class might arise in a number of particular contexts. For example,
if each resource corresponds to a distribution center that fulfills market demands
as they arise (e.g., using a package shipping service), then this problem requires
assigning markets to distribution centers. We are interested in characterizing the
form of the function αi(xi) and the set Xi , as well as the structure of the pricing
problem PP(i), for each i ∈ I , which will permit application of the branch-and-price
method described in the previous section. For a detailed discussion of this problem
class, several problem variants, and computational test results using the branch-and-
price approach, please see [2].

Because each facility faces an EOQ-type problem and must meet all assigned
demand, the function αi(xi) corresponds to the negative of the inventory ordering
and holding costs at facility i. In particular,

αi(xi) = −
{∑

j∈J

Cij xij +
√

2SiHi

∑

j∈J

Djxij

}

. (8.8)

The set Xi defines the allowable assignments to facility i; in the absence of any
specific capacity or budget constraint we have Xi = {0,1}n. Given the definition of
αi(xi) above, the pricing problem is equivalent to the following problem:

[PPEOQ(i)] Maximize
∑

j∈J

(δj − Cij )xij −
√

2SiHi

∑

j∈J

Djxij (8.9)

Subject to xij ∈ {0,1}, j = 1, . . . , n. (8.10)

This pricing problem is equivalent to the EOQ problem with market choice dis-
cussed in Sect. 3.1. As a result, this pricing problem can be solved in polynomial
time for given values of the dual multipliers δj for all j ∈ J . When resource produc-
tion or inventory capacities exist, then the set Xi must be redefined to account for
these constraints. For details on handling such constraints, as well as heuristic solu-
tion approaches for the continuous-time single-sourcing problem, please see [2].

8.2.2 Single-Period Demand Allocation with Uncertainty

This section considers the assignment of a collection of demands to multiple re-
sources in a single-period setting with uncertain demands. That is, we consider a set
J of n independent demands for a single sales period, where demand j ∈ J in the
period is a normally distributed random variable with expected value μj and stan-
dard deviation σj . Each demand must be assigned to some resource i ∈ I , where I
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denotes a set of m resources. Letting Dj denote the random variable for demand j ,
then if xij equals one when demand j is assigned to resource i (and zero otherwise),
the demand observed by resource i equals

∑
j∈J Djxij . Under binary xij variables

and the independence and normality of demands, the expected value of the demand
observed by resource i equals

∑
j∈J μjxij , while the variance equals

∑
j∈J σ 2

j xij .
In addition to determining the assignment of demands to resources, we also wish

to determine each resource’s capacity level Qi for meeting assigned demands. Sup-
pose that the cost per unit produced by resource i equals Ci , while resource i incurs
a unit understock cost of Bi for each demand in excess of Qi , while incurring a unit
overstock cost of Hi for leftover units after assigned demand is realized (a negative
value of Hi corresponds to a salvage value, and we assume Bi > Ci > −Hi ). We
assume that Bi corresponds to a unit emergency supply cost and that demands in
excess of supply are satisfied through an emergency shipment.

The optimal resource i capacity level depends on the assignment vector xi . In
particular, if Fxi

(·) denotes the CDF of assigned resource i demands, then the op-
timal capacity level given the n-dimensional assignment vector xi is determined by
the equation

Fxi

(
Q∗

i (xi)
) = Bi − Ci

Bi + Hi

. (8.11)

Letting z∗
i denote the standard normal value such that the CDF of the standard unit

normal distribution equals the right-hand side of (8.11), then we can write Q∗
i (xi)

explicitly as

Q∗
i (xi) =

∑

j∈J

μjxij + z∗
i

√∑

j∈J

σ 2
j xij . (8.12)

Using the approaches described in Sect. 1.2.2 and in [4], if rij denotes the unit
revenue obtained when serving demand j using resource i, then the expected profit
associated with facility i can be written as

αi(xi) =
∑

j∈J

r̂ij xij − Ki

(
z∗
i

)
√∑

j∈J

σ 2
j xij , (8.13)

where r̂ij = (rij − Ci + Hi)μj and Ki(z
∗
i ) = (Ci + Hi)z

∗
i + (Bi + Hi)L(z∗

i ) (note
that we can also easily account for a fixed cost Sij for assigning demand j to re-
source i by simply subtracting Sij from r̂ij ). Then the pricing problem under the
branch-and-price approach to solving this assignment problem, assuming no ex-
plicit capacity constraints on the Qi values, is stated as follows:

[PPNV(i)] Maximize
∑

j∈J

(r̂ij + δj )xij − Ki

(
z∗
i

)
√∑

j∈J

σ 2
j xij (8.14)

Subject to xij ∈ {0,1}, j = 1, . . . , n. (8.15)

The pricing problem PPNV(i) above is equivalent to the selective newsvendor prob-
lem (SNP) defined in Sect. 4.2, where we showed that this problem can be easily
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solved in polynomial time. The branch-and-price approach to this problem class
is discussed in greater detail in [4], as are methods for solving the problem under
capacity constraints on the Qi values and heuristic solution methods for quickly
finding feasible solutions.

8.2.3 Integrated Facility Location and Production Planning

We next describe a model for facility location planning that integrates time-phased
production allocation decisions with facility location decisions. The traditional fa-
cility location problem (FLP), defined in Sect. 1.2.6, does not contain a time di-
mension. That is, a set J of n demands exists such that Dj denotes the quantity
associated with demand j for j ∈ J , and the FLP is thus effectively a single-period
problem. The FLP uses an assignment cost of cij to capture the cost associated with
using facility i to satisfy demand j . However, this assignment cost is typically a
rough-cut approximation that attempts to capture the production cost at facility i as
well as the cost to deliver the output to the customer. In order to more accurately
capture production costs, we consider a model that accounts for fixed and variable
production costs as well as inventory holding costs at the facilities directly within
the location planning problem.

More specifically, we consider a time horizon containing T periods, such that
nt demands exist in period t , for t = 1, . . . , T , and we let djt denote the quantity
associated with demand j in period t . We wish to assign these demands to a set of
interchangeable supply facilities selected from among a set I of potential locations.
A fixed cost Fi is incurred when operating facility i over the time horizon for each
i ∈ I . The cost Fi may be an amortized (e.g., yearly) cost, while the demands may
correspond to a set of demands that are expected to repeat from year to year.

Each facility follows a production plan in order to meet the assigned demands.
Any positive production quantity in period t at facility i results in a fixed production
cost of Sit , as well as a unit cost of Cit for each unit produced and a holding cost
of Hit for inventory remaining at facility i at the end of period t . For simplicity we
assume that the facilities will not be capacity constrained with respect to production
planning (the model we define is a special case of that defined in [6]). We wish to
simultaneously determine the set of open facilities, the assignment of demands to
facilities, and the minimum production and inventory costs at the facilities for the
given demand assignments. We therefore define y

f
i as a binary variable equal to one

if facility i is open (and zero otherwise) for all i ∈ I . We also define y
p
it as a binary

variable equal to one if production occurs at facility i in period t (and zero other-
wise) for all i ∈ I and t = 1, . . . , T . We next define xijt as a binary variable equal to
one if the j th demand in period t is assigned to facility i, and let Qit and Iit denote
the production and inventory quantities at facility i in period t , respectively. This
integrated location and production planning problem (ILPP) can then be formulated
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as follows:

[ILPP] Minimize
∑

i∈I

{
Fiy

f
i + Pi(xi··)

}
(8.16)

Subject to
∑

i∈I

xij t ≥ 1, t = 1, . . . , T , j = 1, . . . , nt , (8.17)

xijt ≤ y
f
i , i ∈ I, t = 1, . . . , T , j = 1, . . . , nt , (8.18)

xijt ∈ {0,1}, i ∈ I, t = 1, . . . , T , j = 1, (8.19)

y
f
i ∈ {0,1}, i ∈ I. (8.20)

The objective function (8.16) contains the function Pi(xi··) which computes the
minimum production and inventory costs at facility i, given the assignments implied
by the vector xi··, which is a t × nt vector such that element (t, nt ) equals one if
the j th demand in period t is assigned to facility i (and zero otherwise). The first
constraint set (8.17) requires assigning the j th demand in period t to some facility,
while the second constraint set (8.18) disallows assignments to any facility that is
not open. Computing Pi(xi··) requires solving an instance of the ELSP, where the
demand in period t at facility i equals

∑nt

j=1 djtxij t .
We can formulate this problem as a set partitioning problem in which the re-

sources correspond to facilities. In order to translate the ILPP formulation to that
of SP, we first recognize that each (j, t) pair in the ILPP formulation corresponds
to a unique demand index j in the set partitioning formulation, where the set J

now consists of all (j, t) pairs. The set partitioning formulation requires defining
the function αi(xi), which in this setting corresponds to the negative of the mini-
mum cost associated with facility i, given the assignment vector xi (note that we
can translate a given vector xi·· in ILPP to a vector xi in SP in the same way we
translate (j, t) pairs to a single index j ). In particular, assuming xi·· �= 0, then for
each i ∈ I we have

αi(xi) = −{
Fi + Pi(xi··)

}
. (8.21)

Solving the pricing problem for facility i is then equivalent to solving the following
problem:

Maximize
T∑

t=1

{
nt∑

j=1

δjt xij t − Pi(xi··)
}

− Fi (8.22)

Subject to xijt ∈ {0,1}, t = 1, . . . , T , j = 1, . . . , nt . (8.23)

Recall that determining the value of Pi(xi··) for any given values of the xijt variables
requires solving an instance of the ELSP. As a result, the above pricing problem is
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equivalent to solving the following problem:

[PPDSP(i)] Maximize
T∑

t=1

{
nt∑

j=1

δjt xij t − Sity
p
it − CitQit − Hit Iit

}

− Fi

(8.24)

Subject to Iit = Qit + Ii,t−1 −
nt∑

j=1

djtxij t , t = 1, . . . , T , (8.25)

Qit ≤ Mty
p
it , t = 1, . . . , T , (8.26)

Ii0 = 0, Qit , Iit ≥ 0, t = 1, . . . , T , (8.27)

0 ≤ xijt ≤ 1, t = 1, . . . , T , (8.28)

j = 1, . . . , nt ,

y
p
it ∈ {0,1}, t = 1, . . . , T . (8.29)

The pricing problem PPDSP(i) above is equivalent to the demand selection problem
(DSP) defined in Sect. 5.1, which can be solved in polynomial time. Computational
experience with the branch-and-price approach we have outlined for the ILPP prob-
lem is presented in [6], along with a discussion of more general production cost
functions, and an analysis of the impacts of forecasting errors on the model’s per-
formance.

8.2.4 The GAP and FLP with Flexible Demands

Chapter 7 defined models for generalized assignment and facility location problems
with demand specification flexibility, the so-called GAPFD and FLPFD. The cru-
cial difference between these two problems lies in the inclusion of a fixed cost for
opening a facility in the latter problem, while the GAPFD corresponds to the special
case of the FLPFD with zero fixed costs for facilities. Because of this, the branch-
and-price approach is virtually the same for both of these models. Both models
require assigning demands to resources, as with each of the models we have dis-
cussed thus far in this chapter. They can therefore be cast as set partitioning (SP)
problems where the function αi(xi) corresponds to the maximum profit associated
with resource i for the given assignment of demands to the resource implied by the
vector xi . As a result, we will focus on the pricing problem that must be solved in
the branch-and-price approach.

Our analyses in the previous three subsections led to a definition of the pricing
problem’s feasible set, Xi , for any i ∈ I , containing a very simple form, i.e., where
the only constraints on the xij variables were the binary restrictions (although we
alluded to problems involving additional constraints, we did not provide a detailed
analysis of such problems, instead referring to relevant references). The pricing
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problem in the case of the GAPFD and the FLPFD requires explicit recognition
of the additional resource capacity and demand bounding constraints in order to
properly model the problem. We will consider the pricing problem for the FLPFD,
recognizing that the pricing problem for the GAPFD corresponds to the special case
with each facility fixed cost term Si equal to zero.

Unlike our previous pricing problems, determining the value of αi(xi) requires
solving an optimization problem, even for a fixed value of the vector xi . In particular,
for a given facility i, the value of αi(xi) for a fixed vector xi is obtained by solving
the following linear program in the vij variables:

Maximize
∑

j∈J

rij vij (8.30)

Subject to
∑

j∈J

(aij xij + vij ) ≤ bi, (8.31)

lij xij ≤ vij ≤ uij xij , j ∈ J. (8.32)

Let gi(xi) denote the optimal value of the above linear program for a given vector
xi . Using the definition of the function αi(xi) in the case of the FLPFD as well as
the general form of the pricing problem (8.6)–(8.7), we obtain the following pricing
problem for facility i in the analysis of the FLPFD:

[PPKPFD(i)] Maximize
∑

j∈J

{
(πij + δj )xij + gi(xi)

} − Si (8.33)

Subject to x ∈ Xi . (8.34)

In the above formulation, Xi is the set of vectors xi such that (8.31)–(8.32) is non-
empty. The optimal pricing problem solution can be obtained by solving the follow-
ing knapsack problem with flexible demands (KPFD) with π̂ij = πij + δj for each
j ∈ J :

[KPFD] Maximize
∑

j∈J

{π̂ij xij + rij vij } (8.35)

Subject to
∑

j∈J

(aij xij + vij ) ≤ bi, (8.36)

lij xij ≤ vij ≤ uij xij , j ∈ J, (8.37)

xij ∈ {0,1}, j ∈ J. (8.38)

If the optimal solution value of the above KPFD problem is greater than Si +γi , then
an attractive column for the SP formulation of the FLPFD has been identified. The
KPFD problem was analyzed in [1], which provides an O(Uibi) dynamic program-
ming algorithm for problems with integer data, where Ui = ∑

j∈J (uij − lij + 1).
The pricing problem for the FLPFD (and GAPFD) can therefore be solved in pseu-
dopolynomial time. A more general version of the KPFD is analyzed in [3], which
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considers general nonlinear revenue functions of the form rij (vij ) instead of the lin-
ear functions considered above. The results of extensive computational studies of
the branch-and-price approach for both the GAPFD and the FLPFD can be found in
[3], under various assumptions on the structure of the revenue functions.
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Chapter 9
Research Challenges in Supply Chain Planning
with Flexible Demand

Abstract This chapter discusses the limitations of the models we have discussed
throughout the book, and uses these limitations to characterize challenging future
research directions. In doing so, we discuss the relation of the models we have con-
sidered to practice, and their potential for use in practical applications. We also con-
sider the potential for expanding the definition of demand flexibility, as well as the
technical difficulties inherent in meeting the challenges implied by potential future
research avenues.

9.1 Dimensions of Demand Flexibility Modeling

The models presented in this book have taken a number of classical operations prob-
lems and generalized them to permit some flexibility in the requirements a supplier
must meet. In other words, whereas classical operations models have typically con-
sidered demands or requirements as exogenous or “given” parameters, this book
effectively views these requirements as inherent decision variables. As discussed in
Chap. 2, models that consider price-dependent demand have taken this view in the
literature for many years. That is, when prices are decision variables, and prices im-
ply demand levels, this constitutes one form of demand flexibility wherein a supplier
attempts to determine optimal demand levels.

The models presented in this book have taken a more direct view, treating the
demand levels themselves as decision variables. This view recognizes the fact that
many producers have some level of discretion in determining the customer orders
they are willing to accept. We also consider practical contexts in which customers
allow some degree of demand specification flexibility. Although we permitted cer-
tain degrees of demand flexibility in the models we analyzed, some may consider
this view of demand flexibility to be somewhat limited.

For example, the models in this book do not permit temporal flexibility. That is,
given a demand in some period t , we assumed that the customer is inflexible with
respect to time, i.e., the demand must be met in period t or not at all. As one example
of a type of temporal flexibility, we might consider the availability of backlogging
(or even early delivery of) some or all of a customer’s demand in a period. While
many of the models we have discussed generalize fairly easily to the case of back-
logging under certain backlogging cost assumptions, temporal flexibility in demand
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satisfaction may provide substantial economic value to a supplier (an ELSP with
demand time windows is considered in [7], while a problem with demand selec-
tion and time windows is analyzed in [9]). Because customers are often willing to
permit demand fulfillment timing flexibility in exchange for a price break, incor-
porating such temporal flexibility into operations models has potential for practical
impact.

The models discussed throughout this book have also been limited to single-
product contexts. Beyond the practical value of generalizing these models to account
for potential complexities introduced in multi-product settings, these multi-product
settings can lead to another dimension of demand flexibility involving product sub-
stitutions. Product and component substitutability can lead to substantial economic
benefits for a supplier (see, e.g., [2, 4]), but this requires an understanding of cus-
tomers’ tolerances in terms of accepting a substitute product or component. Inte-
grated modeling of production planning and end product substitutions (given cus-
tomers’ willingness to accept substitute products and their reservation prices for
substitutes) can aid in product line design decisions that maximize profitability (see
[4]). Models that permit demand selection, pricing, demand specification flexibility,
and product substitutions provide an interesting direction for future research on the
benefits of demand flexibility to a supplier.

9.2 Model Limitations

The models we considered throughout this book have attempted to balance between
practical applications and model tractability. As a result, some of the assumptions
employed may be overly restrictive for certain practical settings. The majority of
the analysis has focused on deterministic models, and the stochastic models we
discussed certainly have limited application (recall that we only considered single-
period models with demand uncertainty, although these easily generalize to infinite-
horizon cases with stationary demands and variable costs, zero fixed order cost,
and unlimited capacities). These models thus serve as a rough approximation of the
corresponding situation faced in practice, and may therefore be used in planning
phases, along with sensitivity analysis to determine how structural decisions (e.g.,
order acceptance, facility location) might change as model parameters vary.

The models that we considered involving demand uncertainty used an assump-
tion of statistical independence of individual demands that are normally distributed.
One interesting direction for future research would permit correlation of demands,
for example, in the selective newsvendor problem (SNP) with normal demands. In
this case, if ρjk denotes the correlation coefficient for demands j and k, then the
SNP (originally discussed in Sect. 4.2) would be written as follows:

Maximizex∈{0,1}n
∑

j∈J

rjμjxj − K
(
z∗)

√∑

j∈J

σ 2
j xj + 2

∑

j∈J

∑

k>j

ρjkσjσkxj xk. (9.1)
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The additional covariance term under the square root function leads to nontrivial
mathematical difficulties, and eliminates the ability to implement a sorting-based
algorithm for determining an optimal solution.

Another simplifying assumption we made in the selective newsvendor setting
was the ability to set capacity, Q, based on the optimal critical fractile value, ac-
cording to Eq. (1.7). If this capacity is set to some fixed value of b, then we have
a substantially more difficult problem (this problem is sometimes referred to as a
static stochastic knapsack problem; see [3, 6], or [10]). Under this assumption we
cannot use a simple sorting approach to solve the problem, although the problem’s
continuous relaxation can be formulated as a convex program. The normal demand
assumption is also clearly an approximation made for tractability, and dealing with
non-normal demand distributions can be challenging (note that a static stochastic
knapsack problem with independent Poisson distributed demands is considered in
[1]). Beyond dealing with other demand distributions, more sophisticated models
are needed to handle a broader set of problems involving stochastic demands be-
yond those that can be expressed as single-period problems.

In dealing with generalizations of the ELSP (i.e., the demand selection and mar-
ket selection problems in Chaps. 5 and 6), we have primarily shied away from deal-
ing with finite production capacities. As we showed in Chap. 6, the market selection
problem is N P-Hard even in the absence of production capacities. We did note,
however, in Chap. 5, that the demand selection problem with time-invariant capac-
ities is polynomially solvable, albeit with a high-order polynomial. Dealing with
such capacities is necessary in practice, and heuristic methods for dealing with such
problems are necessary for handling practical problem contexts.

9.3 Limitations of Branch-and-Price Decomposition

The branch-and-price method discussed in Chap. 8 is a very useful approach for
decomposing a large-scale optimization problem into a set of subproblems, each
of which is considerably easier to solve than the original problem. This approach
clearly has some limitations, as it is an exact method that we have applied for solv-
ing N P-Hard problems. Thus, while branch-and-price often permits solving larger
problems than would otherwise be solvable (e.g., by using a commercial solver to
attack a large-scale problem formulation), we eventually run into memory or time
constraints with this method as well. This is because the set partitioning problem,
which is used as the basis for the branch-and-price method, is itself an N P-Hard
problem in general (despite the fact that the LP relaxation of set partitioning is of-
ten very tight with respect to the optimal integer solution). Moreover, the pricing
problems we have discussed are, in some cases, difficult problems themselves. For
example, the pricing problems for the GAPFD and the FLPFD were solvable in
pseudopolynomial time when the revenue functions were linear. Thus, if the prob-
lem data values are large, solving a single instance of the pricing problem can itself
be time consuming. Under general nonlinear revenue functions, the pricing prob-
lems may themselves be N P-Hard optimization problems. Clearly then, for large
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enough problem instances, the branch-and-price method may not serve as a practi-
cal solution approach, and heuristic methods must be developed and applied, leaving
heuristic development for large-scale problems as a promising avenue for further re-
search.

9.4 Further Generalizations and Approximation Algorithms

One of the methods discussed in Chap. 6 for solving the N P-Hard market se-
lection problem (MSP) was an LP-rounding based approximation algorithm. Recall
that this method begins with the solution of the problem’s LP relaxation. Given a
solution vector ŵ of market selection variables for this LP relaxation, and given a
fraction β , we round the market selection variable for market j to one if ŵj ≥ β

and we round down to zero otherwise (recall also that rounding up is equivalent to
rejecting a market, while rounding down is equivalent to selecting a market). Given
the rounded market selection variables, we can then solve an instance of the ELSP
with the selected markets to obtain a feasible solution for the MSP. As we noted in
Chap. 6, by the appropriate selection of m values of β , we were able to show that the
application of this heuristic approach m times permits obtaining a feasible solution
for the MSP whose solution value is no more than 1.582 times the minimum cost
solution.

In [5], a more general class of market selection problems is considered, along
with a general version of this rounding-based approximation algorithm. In particu-
lar, the following general problem class, denoted by P, is considered in [5]:

[P] min
w∈{0,1}n rw − φ(w). (9.2)

In problem P, r is an n-vector of market revenue values, w is an n-vector of market
selection variables, and φ(w) is a nonnegative (cost) function that depends on w.
For example, in the case of the MSP, φ(w) is the minimum cost ELSP solution for
a given choice w of market selection variables.

Evaluating φ(w) requires solving an optimization problem in which w serves
as a set of parameters. Let Φ(w) denote this corresponding optimization problem.
Suppose that a lower bounding function φ̄(w) exists for φ(w) (with φ̄(w) ≤ φ(w)

for all w ∈ [0,1]n), and that it is possible to efficiently find a feasible solution to
Φ(w) with solution value no more than αφ̄(w) for some α ≥ 1. Because φ̄(w) is
a lower bounding function, and because we can find a feasible solution to Φ(w)

with value no higher than αφ̄(w), this implies that we have an α-approximation
algorithm for Φ(w) (in the case of the MSP, Φ(w) is an instance of the ELSP, φ̄(w)

is the LP relaxation solution, and we can quickly find a feasible solution to Φ(w)

with value no more than φ̄(w) because the LP relaxation is tight; this implies that
we have a 1-approximation algorithm for Φ(w) in this case).

Suppose further that the continuous relaxation of P can be solved efficiently when
φ(w) is replaced by φ̄(w) (where w ∈ {0,1}n is also replaced by w ∈ [0,1]n).
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Next, given any vector w ∈ [0,1]n and a fraction β with 0 ≤ β < 1, let [w]β de-
note the rounded vector of wj values (using our rounding rules), and assume that
φ̄([w]β) ≤ 1

1−β
φ̄(w). This last condition establishes an upper bound on the mini-

mum cost solution to Φ(w) when using the rounded solution vector.
The approximation algorithm provided in [5] works as follows. We first solve the

continuous relaxation of problem P when φ(w) is replaced with the lower bound-
ing function φ̄(w). Let w̃ denote the corresponding (fractional) market selection
vector solution. Next, given β , we round w̃ to obtain [w̃]β , and then apply the
α-approximation algorithm to obtain a solution to Φ([w̃]β), and a corresponding
feasible solution to problem P.

Observe that r[w̃]β ≤ (1/β)rw̃ and we obtain a solution using the approximation
algorithm with cost no greater than αφ̄([w̃]β). Because φ̄([w̃]β) ≤ 1

1−β
φ̄(w̃), this

implies that our algorithm gives a feasible solution to P with cost no greater than

1

β
rw̃ + α

1 − β
φ̄(w̃) ≤ max

{
1

β
,

α

1 − β

}(
rw̃ + φ̄(w̃)

) ≤ max

{
1

β
,

α

1 − β

}
Z∗,

where Z∗ is the optimal solution value for problem P, and, rw̃ + φ̄(w̃), the optimal
relaxation solution value, provides a lower bound on Z∗. Setting β = 1/(α + 1)

gives 1/β = α/(1 −β) = α + 1. Thus, when β = 1/α + 1, this approximation algo-
rithm provides a feasible solution with a performance guarantee of α + 1 (see [5]).

In our approximation algorithm in Chap. 6 for the MSP, because α = 1, this im-
plies a worst-case performance guarantee of 2 for the MSP. As discussed in Chap. 6,
by randomizing the algorithm, and then derandomizing, this worst-case guarantee
was improved to 1.582. Similarly, for the general problem class P, it is possible to
show that if an α-approximation algorithm exists for problem Φ(w), then we can
use the rounding approach and the α-approximation algorithm to obtain a solution
to problem P with a worst-case performance guarantee of 1

1−e−1/α (see [5]).
Because problem P is posed quite generally, this result has broad implications

for generalizing several N P-Hard problems to permit demand selection, as noted
in [5]. We illustrate this using the so-called one-warehouse multi-retailer (OWMR)
problem as an example. This problem contains a set of n retailers that are supplied
with inventory from a centralized warehouse, which replenishes its supply using an
external supplier. Each retailer faces deterministic demands in every period over a
finite time horizon of length T . A fixed cost is incurred when any retailer places a
replenishment order with the warehouse, and when the warehouse places a replen-
ishment order with its supplier. The objective of the OWMR problem is to minimize
total system-wide fixed ordering plus inventory holding costs.

In the market-selection version of the OWMR problem, retailer i has a demand
of di

jt from market j in period t , for j ∈ J , t = 1, . . . , T , and i = 1, . . . ,m, where
J denotes a set of markets. The goal is to determine a selection of markets to serve,
which then determines the demands that the retailers must face. Thus, for a given
selection of markets, the problem reduces to the OWMR problem. Because the joint
replenishment problem (JRP) is the special case of the OWMR problem in which
the warehouse inventory cost is infinite (and the warehouse, therefore, holds no
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inventory), all of the results that hold for the OWMR problem with market selection
also hold for the JRP with market selection. As shown in [8], a 1.8-approximation
algorithm exists for the OWMR. Based on the previous results we have discussed
for problem P, this implies a

1

1 − e−1/1.8
≈ 2.35

approximation algorithm for the market selection version of the OWMR problem
and, therefore, the JRP as well. Additional problem generalizations and associated
worst-case performance bounds are discussed in [5], including problems with soft-
capacities, problems with uncertain market revenues and demands, an assembly
problem, and specific types of facility location problems with market choice.

The preceding discussion provides an indication of the potential that exists for
additional research involving selection problems, particularly in terms of identifying
general models and results that may apply broadly to problem classes that permit
demand flexibility. While these results correspond to approximation algorithms with
worst-case performance guarantees, analysis of exact and heuristic approaches for
solving general problem classes with demand flexibility also serves as a promising
direction for continued research.

References
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10. Merzifonluoğlu Y, Geunes J, Romeijn H (2011) The Static Stochastic Knapsack Problem with
Normally Distributed Item Sizes. Mathematical Programming, Series A (forthcoming)


	Cover
	Demand Flexibility in Supply Chain Planning
	Preface
	Acknowledgements
	Contents

	Part I: Supply Chain Operations Models with Demand Shaping
	Chapter 1: Scope of Problem Coverage and Introduction
	1.1 Scope and Preliminaries
	1.2 Overview of Foundational Models
	1.2.1 The Economic Order Quantity (EOQ) Model
	1.2.2 The Newsvendor Problem
	1.2.3 The Economic Lot Sizing Problem (ELSP)
	1.2.4 The Knapsack Problem (KP)
	1.2.5 The Generalized Assignment Problem (GAP)
	1.2.6 The Facility Location Problem (FLP)

	References

	Chapter 2: Production and Inventory Planning Models with Demand Shaping
	2.1 EOQ Models with Pricing
	2.2 The Newsvendor Problem with Pricing and Demand Shaping
	2.3 Lot Sizing with Pricing
	2.4 Knapsack Problems with Nonlinear Objectives
	2.5 Location and Assignment Problems with Flexible Demand
	References

	Part II: Production Planning with Demand Flexibility
	Chapter 3: EOQ-Type Models with Demand Selection
	3.1 Unconstrained EOQ Problems with Market Choice
	3.1.1 Standard EOQ with Market Choice
	3.1.2 The EPQ Problem with Market Choice

	3.2 EOQMC Problems with Constraints
	3.2.1 Demand Rate Constraints
	3.2.2 Batch Size Constraints

	References

	Chapter 4: Single-Period Stochastic Inventory Planning with Demand Selection
	4.1 The Selective Newsvendor Problem
	4.2 The Basic SNP
	4.3 The SNP with Market Effort
	4.3.1 Market Variance Independent of Market Effort
	4.3.2 Market Variance Dependent on Market Effort

	4.4 The SNP with Limited Market Resources
	4.5 The SNP with Pricing
	4.5.1 Equal Market Prices
	4.5.2 SNP with Market Price Discrimination

	References

	Chapter 5: Dynamic Lot Sizing with Demand Selection and the Pricing Analog
	5.1 Demand Selection Problem Deﬁnition
	5.2 Dual Ascent Solution Algorithm
	5.3 Shortest Path Solution Approach
	5.4 Interpretation of the DSP as a Pricing Problem
	5.5 Capacitated Versions
	References

	Chapter 6: Dynamic Lot Sizing with Market Selection
	6.1 Market Selection Problem Deﬁnition
	6.1.1 MSP Problem Complexity
	6.1.2 MSP Approximability
	6.1.3 Polynomially Solvable Special Cases
	6.1.4 Heuristic Solution Methods

	References

	Part III: Supply Chain Network Planning with Demand Flexibility
	Chapter 7: Assignment and Location Problems in Supply Chains
	7.1 Demand Selection Problems
	7.1.1 The GAP with Demand Selection
	7.1.2 The FLP with Demand Selection

	7.2 Problems with Demand Speciﬁcation Flexibility
	7.2.1 The GAP with Demand Speciﬁcation Flexibility
	7.2.2 The FLP with Demand Speciﬁcation Flexibility

	References

	Chapter 8: Branch-and-Price Decomposition for Assignment and Location Problems
	8.1 Branch-and-Price Approach
	8.2 Branch-and-Price for Supply Chain Planning Problems
	8.2.1 The Continuous-Time Single-Sourcing Problem
	8.2.2 Single-Period Demand Allocation with Uncertainty
	8.2.3 Integrated Facility Location and Production Planning
	8.2.4 The GAP and FLP with Flexible Demands

	References

	Part IV: Research Directions and Modeling Challenges
	Chapter 9: Research Challenges in Supply Chain Planning with Flexible Demand
	9.1 Dimensions of Demand Flexibility Modeling
	9.2 Model Limitations
	9.3 Limitations of Branch-and-Price Decomposition
	9.4 Further Generalizations and Approximation Algorithms
	References


